Fan LIU Zhewang MA Masataka OHIRA Dongchun QIAO Guosheng PU Masaru ICHIKAWA
In this paper, a precise design method of high-order bandpass filters (BPFs) with complicated coupling topologies is proposed, and is demonstrated through the design of an 11-pole BPF using TM010 mode dielectric resonators (DRs). A novel Z-shaped coupling structure is proposed which avoids the mixed use of TM010 and TM01δ modes and enables the tuning and assembling of the filter much easier. The coupling topology of the BPF includes three cascade triplets (CTs) of DRs, and both the capacitive and inductive couplings in the CTs are designed independently tunable, which produce consequently three controllable transmission zeros on both sides of the passband of filter. A procedure of mapping the coupling matrix of BPF to its physical dimensions is developed, and an iterative optimization of these physical dimensions is implemented to achieve best performance. The design of the 11-pole BPF is shown highly precise by the excellent agreement between the electromagnetic simulated response of the filter and the desired target specifications.
We propose a zero-order-hold triggered control for a chain of integrators with an arbitrary sampling period. We analytically show that our control scheme globally asymptotically stabilizes the considered system. The key feature is that the pre-specified sampling period can be enlarged as desired by adjusting a gain-scaling factor. An example with various simulation results is given for clear illustration.
Xiuping PENG Yinna LIU Hongbin LIN
In this letter, we propose a novel direct construction of three-phase Z-complementary triads with flexible lengths and various widths of the zero-correlation zone based on extended Boolean functions. The maximum width ratio of the zero-correlation zone of the construction can reach 3/4. And the proposed sequences can exist for all lengths other than powers of three. We also investigate the peak-to-average power ratio properties of the proposed ZCTs.
So KOIDE Yoshiaki TAKATA Hiroyuki SEKI
Synthesis problems on multiplayer non-zero-sum games (MG) with multiple environment players that behave rationally are the problems to find a good strategy of the system and have been extensively studied. This paper concerns the synthesis problems on stochastic MG (SMG), where a special controller other than players, called nature, which chooses a move in its turn randomly, may exist. Two types of synthesis problems on SMG exist: cooperative rational synthesis problem (CRSP) and non-cooperative rational synthesis problem (NCRSP). The rationality of environment players is modeled by Nash equilibria, and CRSP is the problem to decide whether there exists a Nash equilibrium that gives the system a payoff not less than a given threshold. Ummels et al. studied the complexity of CRSP for various classes of objectives and strategies of players. CRSP fits the situation where the system can make a suggestion of a strategy profile (a tuple of strategies of all players) to the environment players. However, in real applications, the system may rarely have an opportunity to make suggestions to the environment, and thus CRSP is optimistic. NCRSP is the problem to decide whether there exists a strategy σ0 of the system satisfying that for every strategy profile of the environment players that forms a 0-fixed Nash equilibrium (a Nash equilibrium where the system's strategy is fixed to σ0), the system obtains a payoff not less than a given threshold. In this paper, we investigate the complexity of NCRSP for positional (i.e. pure memoryless) strategies. We consider ω-regular objectives as the model of players' objectives, and show the complexity results of the problem for several subclasses of ω-regular objectives. In particular, the problem for terminal reachability (TR) objectives is shown to be Σp2-complete.
Javier Jose DIAZ RIVERA Waleed AKBAR Talha AHMED KHAN Afaq MUHAMMAD Wang-Cheol SONG
Zero Trust Networking (ZTN) is a security model where no default trust is given to entities in a network infrastructure. The first bastion of security for achieving ZTN is strong identity verification. Several standard methods for assuring a robust identity exist (E.g., OAuth2.0, OpenID Connect). These standards employ JSON Web Tokens (JWT) during the authentication process. However, the use of JWT for One Time Token (OTT) enrollment has a latent security issue. A third party can intercept a JWT, and the payload information can be exposed, revealing the details of the enrollment server. Furthermore, an intercepted JWT could be used for enrollment by an impersonator as long as the JWT remains active. Our proposed mechanism aims to secure the ownership of the OTT by including the JWT as encrypted metadata into a Non-Fungible Token (NFT). The mechanism uses the blockchain Public Key of the intended owner for encrypting the JWT. The blockchain assures the JWT ownership by mapping it to the intended owner's blockchain public address. Our proposed mechanism is applied to an emerging Zero Trust framework (OpenZiti) alongside a permissioned Ethereum blockchain using Hyperledger Besu. The Zero Trust Framework provides enrollment functionality. At the same time, our proposed mechanism based on blockchain and NFT assures the secure distribution of OTTs that is used for the enrollment of identities.
Kaoru SUDO Ryo MIKASE Yoshinori TAGUCHI Koichi TAKIZAWA Yosuke SATO Kazushige SATO Hisao HAYAFUJI Masataka OHIRA
This paper proposes a dual-polarized filtering antenna with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes the high skirt characteristic of the bandpass filter with transmission zeros (TZs) located near the passband without cross coupling. The filtering antenna with EPU is designed and fabricated in 28GHz band for 5G Band-n257 (26.5-29.5GHz). The measured S11 is less than -10.6dB in Band-n257, and the isolation between two ports for dual polarization is greater than 20.0dB. The measured peak antenna gain is 4.0dBi at 28.8GHz and the gain is larger than 2.5dBi in Band-n257. The frequency characteristics of the measured antenna gain shows the high skirt characteristic out of band, which are in good agreement with electromagnetic (EM)-simulated results.
We present an effective system for integrating generative zero-shot classification modules into a YOLO-like dense detector to detect novel objects. Most double-stage-based novel object detection methods are achieved by refining the classification output branch but cannot be applied to a dense detector. Our system utilizes two paths to inject knowledge of novel objects into a dense detector. One involves injecting the class confidence for novel classes from a classifier trained on data synthesized via a dual-step generator. This generator learns a mapping function between two feature spaces, resulting in better classification performance. The second path involves re-training the detector head with feature maps synthesized on different intensity levels. This approach significantly increases the predicted objectness for novel objects, which is a major challenge for a dense detector. We also introduce a stop-and-reload mechanism during re-training for optimizing across head layers to better learn synthesized features. Our method relaxes the constraint on the detector head architecture in the previous method and has markedly enhanced performance on the MSCOCO dataset.
Xiaoyu CHEN Yihan ZHANG Lianfeng SUN Yubo LI
This letter is devoted to constructing new Type-II Z-complementary pairs (ZCPs). A ZCP of length N with ZCZ width Z is referred to in short by the designation (N, Z)-ZCP. Inspired by existing works of ZCPs, systematic constructions of (2N+3, N+2)-ZCPs and (4N+4, 7/2N+4)-ZCPs are proposed by appropriately inserting elements into concatenated GCPs. The odd-length binary Z-complementary pairs (OB-ZCPs) are Z-optimal. Furthermore, the proposed construction can generate even-length binary Z-complementary pairs (EB-ZCPs) with ZCZ ratio (i.e. ZCZ width over the sequence length) of 7/8. It turns out that the PMEPR of resultant EB-ZCPs are upper bounded by 4.
Takeshi MIYAMAE Fumihiko KOZAKURA Makoto NAKAMURA Masanobu MORINAGA
The total number of solar power-producing facilities whose Feed-in Tariff (FIT) Program-based ten-year contracts will expire by 2023 is expected to reach approximately 1.65 million in Japan. If the facilities that produce or consume renewable energy would increase to reach a large number, e.g., two million, blockchain would not be capable of processing all the transactions. In this work, we propose a blockchain-based electricity-tracking platform for renewable energy, called ‘ZGridBC,’ which consists of mutually cooperative two novel decentralized schemes to solve scalability, storage cost, and privacy issues at the same time. One is the electricity production resource management, which is an efficient data management scheme that manages electricity production resources (EPRs) on the blockchain by using UTXO tokens extended to two-dimension (period and electricity amount) to prevent double-spending. The other is the electricity-tracking proof, which is a massive data aggregation scheme that significantly reduces the amount of data managed on the blockchain by using zero-knowledge proof (ZKP). Thereafter, we illustrate the architecture of ZGridBC, consider its scalability, security, and privacy, and illustrate the implementation of ZGridBC. Finally, we evaluate the scalability of ZGridBC, which handles two million electricity facilities with far less cost per environmental value compared with the price of the environmental value proposed by METI (=0.3 yen/kWh).
Tao LIU Meiyue WANG Dongyan JIA Yubo LI
In the massive machine-type communication scenario, aiming at the problems of active user detection and channel estimation in the grant-free non-orthogonal multiple access (NOMA) system, new sets of non-orthogonal spreading sequences are proposed by using the zero/low correlation zone sequence set with low correlation among multiple sets. The simulation results show that the resulting sequence set has low coherence, which presents reliable performance for channel estimation and active user detection based on compressed sensing. Compared with the traditional Zadoff-Chu (ZC) sequences, the new non-orthogonal spreading sequences have more flexible lengths, and lower peak-to-average power ratio (PAPR) and smaller alphabet size. Consequently, these sequences will effectively solve the problem of high PAPR of time domain signals and are more suitable for low-cost devices in massive machine-type communication.
He HE Shun KOJIMA Kazuki MARUTA Chang-Jun AHN
In mobile communication systems, the channel state information (CSI) is severely affected by the noise effect of the receiver. The adaptive subcarrier grouping (ASG) for sample matrix inversion (SMI) based minimum mean square error (MMSE) adaptive array has been previously proposed. Although it can reduce the additive noise effect by increasing samples to derive the array weight for co-channel interference suppression, it needs to know the signal-to-noise ratio (SNR) in advance to set the threshold for subcarrier grouping. This paper newly proposes adaptive zero padding (AZP) in the time domain to improve the weight accuracy of the SMI matrix. This method does not need to estimate the SNR in advance, and even if the threshold is always constant, it can adaptively identify the position of zero-padding to eliminate the noise interference of the received signal. Simulation results reveal that the proposed method can achieve superior bit error rate (BER) performance under various Rician K factors.
Kazuo TAKARAGI Takashi KUBOTA Sven WOHLGEMUTH Katsuyuki UMEZAWA Hiroki KOYANAGI
Central bank digital currencies require the implementation of eKYC to verify whether a trading customer is eligible online. When an organization issues an ID proof of a customer for eKYC, that proof is usually achieved in practice by a hierarchy of issuers. However, the customer wants to disclose only part of the issuer's chain and documents to the trading partner due to privacy concerns. In this research, delegatable anonymous credential (DAC) and zero-knowledge range proof (ZKRP) allow customers to arbitrarily change parts of the delegation chain and message body to range proofs expressed in inequalities. That way, customers can protect the privacy they need with their own control. Zero-knowledge proof is applied to prove the inequality between two time stamps by the time stamp server (signature presentation, public key revocation, or non-revocation) without disclosing the signature content and stamped time. It makes it possible to prove that the registration information of the national ID card is valid or invalid while keeping the user's personal information anonymous. This research aims to contribute to the realization of a sustainable financial system based on self-sovereign identity management with privacy-enhanced PKI.
Yaping SUN Gaoqi DOU Hao WANG Yufei ZHANG
With the advent of the Internet of Things (IoT), short packet transmissions will dominate the future wireless communication. However, traditional coherent demodulation and channel estimation schemes require large pilot overhead, which may be highly inefficient for short packets in multipath fading scenarios. This paper proposes a novel pilot-free short packet structure based on the association of modulation on conjugate-reciprocal zeros (MOCZ) and tail-biting convolutional codes (TBCC), where a noncoherent demodulation and decoding scheme is designed without the channel state information (CSI) at the transceivers. We provide a construction method of constellation sets and demodulation rule for M-ary MOCZ. By deriving low complexity log-likelihood ratios (LLR) for M-ary MOCZ, we offer a reasonable balance between energy and bandwidth efficiency for joint coding and modulation scheme. Simulation results show that our proposed scheme can attain significant performance and throughput gains compared to the pilot-based coherent modulation scheme over multipath fading channels.
Xiuping PENG Mingshuo SHEN Hongbin LIN Shide WANG
This letter provides a direct construction of binary even-length Z-complementary pairs. To date, the maximum zero correlation zone ratio of Type-I Z-complementary pairs has reached 6/7, but no direct construction of Z-complementary pairs can achieve the zero correlation zone ratio of 6/7. In this letter, based on Boolean function, we give a direct construction of binary even-length Z-complementary pairs with zero correlation zone ratio 6/7. The length of constructed Z-complementary pairs is 2m+3 + 2m + 2+2m+1 and the width of zero correlation zone is 2m+3 + 2m+2.
Fan LIU Zhewang MA Weihao ZHANG Masataka OHIRA Dongchun QIAO Guosheng PU Masaru ICHIKAWA
A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.
Sixia LI Shogo OKADA Jianwu DANG
Zero-shot slot filling is a domain adaptation approach to handle unseen slots in new domains without training instances. Previous studies implemented zero-shot slot filling by predicting both slot entities and slot types. Because of the lack of knowledge about new domains, the existing methods often fail to predict slot entities for new domains as well as cannot effectively predict unseen slot types even when slot entities are correctly identified. Moreover, for some seen slot types, those methods may suffer from the domain shift problem, because the unseen context in new domains may change the explanations of the slots. In this study, we propose intrinsic representations to alleviate the domain shift problems above. Specifically, we propose a multi-relation-based representation to capture both the general and specific characteristics of slot entities, and an ontology-based representation to provide complementary knowledge on the relationships between slots and values across domains, for handling both unseen slot types and unseen contexts. We constructed a two-step pipeline model using the proposed representations to solve the domain shift problem. Experimental results in terms of the F1 score on three large datasets—Snips, SGD, and MultiWOZ 2.3—showed that our model outperformed state-of-the-art baselines by 29.62, 10.38, and 3.89, respectively. The detailed analysis with the average slot F1 score showed that our model improved the prediction by 25.82 for unseen slot types and by 10.51 for seen slot types. The results demonstrated that the proposed intrinsic representations can effectively alleviate the domain shift problem for both unseen slot types and seen slot types with unseen contexts.
An asymmetric zero correlation zone (A-ZCZ) sequence set can be regarded as a special type of ZCZ sequence set, which consists of multiple sequence subsets. Each subset is a ZCZ sequence set, and have a common zero cross-correlation zone (ZCCZ) between sequences from different subsets. This paper supplements an existing construction of A-ZCZ sequence sets and further improves the research results. Besides, a new construction of A-ZCZ sequence sets is proposed by matrices transformation. The obtained sequence sets are optimal with respect to theoretical bound, and the parameters can be chosen more flexibly, such as the number of subsets and the lengths of ZCCZ between sequences from different subsets. Moreover, as the diversity of the orthogonal matrices and the flexibility of initial matrix, more A-ZCZ sequence sets can be obtained. The resultant sequence sets presented in this paper can be applied to multi-cell quasi-synchronous code-division multiple-access (QS-CDMA) systems, to eliminate the interference not only from the same cell but also from adjacent cells.
Ding LI Chunxiang GU Yuefei ZHU
Website Fingerprinting (WF) enables a passive attacker to identify which website a user is visiting over an encrypted tunnel. Current WF attacks have two strong assumptions: (i) specific tunnel, i.e., the attacker can train on traffic samples collected in a simulated tunnel with the same tunnel settings as the user, and (ii) pseudo-open-world, where the attacker has access to training samples of unmonitored sites and treats them as a separate class. These assumptions, while experimentally feasible, render WF attacks less usable in practice. In this paper, we present Gene Fingerprinting (GF), a new WF attack that achieves cross-tunnel transferability by generating fingerprints that reflect the intrinsic profile of a website. The attack leverages Zero-shot Learning — a machine learning technique not requiring training samples to identify a given class — to reduce the effort to collect data from different tunnels and achieve a real open-world. We demonstrate the attack performance using three popular tunneling tools: OpenSSH, Shadowsocks, and OpenVPN. The GF attack attains over 94% accuracy on each tunnel, far better than existing CUMUL, DF, and DDTW attacks. In the more realistic open-world scenario, the attack still obtains 88% TPR and 9% FPR, outperforming the state-of-the-art attacks. These results highlight the danger of our attack in various scenarios where gathering and training on a tunnel-specific dataset would be impractical.
Yaying SHEN Qun LI Ding XU Ziyi ZHANG Rui YANG
A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experimental results demonstrate that the proposed framework achieves great improvement.
Toru NAKANISHI Hiromi YOSHINO Tomoki MURAKAMI Guru-Vamsi POLICHARLA
To prove the graph relations such as the connectivity and isolation for a certified graph, a system of a graph signature and proofs has been proposed. In this system, an issuer generates a signature certifying the topology of an undirected graph, and issues the signature to a prover. The prover can prove the knowledge of the signature and the graph in the zero-knowledge, i.e., the signature and the signed graph are hidden. In addition, the prover can prove relations on the certified graph such as the connectivity and isolation between two vertexes. In the previous system, using integer commitments on RSA modulus, the graph relations are proved. However, the RSA modulus needs a longer size for each element. Furthermore, the proof size and verification cost depend on the total numbers of vertexes and edges. In this paper, we propose a graph signature and proof system, where these are computed on bilinear groups without the RSA modulus. Moreover, using a bilinear map accumulator, the prover can prove the connectivity and isolation on a graph, where the proof size and verification cost become independent from the total numbers of vertexes and edges.