Katsuki TOKANO Wenqi ZHU Tatsuki OSATO Kien NGUYEN Hiroo SEKIYA
This paper presents a design method of a two-hop wireless power transfer (WPT) system for installing on a robot arm. The class-E inverter and the class-D rectifier are used on the transmission and receiving sides, respectively, in the proposed WPT system. Analytical equations for the proposed WPT system are derived as functions of the geometrical and physical parameters of the coils, such as the outer diameter and height of the coils, winding-wire diameter, and number of turns. Using the analytical equations, we can optimize the WPT system to obtain the design values with the theoretically highest power-delivery efficiency under the size limitation of the robot arm. The circuit experiments are in quantitative agreement with the theoretical predictions obtained from the analysis, indicating the validity of the analysis and design method. The experimental prototype achieved 83.6% power-delivery efficiency at 6.78MHz operating frequency and 39.3W output power.
Tomokazu ODA Atsushi NAKAMURA Daisuke IIDA Hiroyuki OSHIDA
We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.
Shohei KAMAMURA Yuhei HAYASHI Yuki MIYOSHI Takeaki NISHIOKA Chiharu MORIOKA Hiroyuki OHNISHI
This paper proposes a fast and scalable traffic monitoring system called Fast xFlow Proxy. For efficiently provisioning and operating networks, xFlow such as IPFIX and NetFlow is a promising technology for visualizing the detailed traffic matrix in a network. However, internet protocol (IP) packets in a large carrier network are encapsulated with various outer headers, e.g., layer 2 tunneling protocol (L2TP) or multi-protocol label switching (MPLS) labels. As native xFlow technologies are applied to the outer header, the desired inner information cannot be visualized. From this motivation, we propose Fast xFlow Proxy, which explores the complicated carrier's packet, extracts inner information properly, and relays the inner information to a general flow collector. Fast xFlow Proxy should be able to handle various packet processing operations possible (e.g., header analysis, header elimination, and statistics) at a wire rate. To realize the processing speed needed, we implement Fast xFlow Proxy using the data plane development kit (DPDK) and field-programmable gate array (FPGA). By optimizing deployment of processes between DPDK and FPGA, Fast xFlow Proxy achieves wire rate processing. From evaluations, we can achieve over 20 Gbps performance by using a single server and 100 Gbps performance by using scale-out architecture. We also show that this performance is sufficiently practical for monitoring a nationwide carrier network.
Kei FUJIMOTO Masashi KANEKO Kenichi MATSUI Masayuki AKUTSU
Packet processing on commodity hardware is a cost-efficient and flexible alternative to specialized networking hardware. However, virtualizing dedicated networking hardware as a virtual machine (VM) or a container on a commodity server results in performance problems, such as longer latency and lower throughput. This paper focuses on obtaining a low-latency networking system in a VM and a container. We reveal mechanisms that cause millisecond-scale networking delays in a VM through a series of experiments. To eliminate such delays, we design and implement a low-latency networking system, kernel busy poll (KBP), which achieves three goals: (1) microsecond-scale tail delays and higher throughput than conventional solutions are achieved in a VM and a container; (2) application customization is not required, so applications can use the POSIX sockets application program interface; and (3) KBP software does not need to be developed for every Linux kernel security update. KBP can be applied to both a VM configuration and a container configuration. Evaluation results indicate that KBP achieves microsecond-scale tail delays in both a VM and a container. In the VM configuration, KBP reduces maximum round-trip latency by more than 98% and increases the throughput by up to three times compared with existing NAPI and Open vSwitch with the Data Plane Development Kit (OvS-DPDK). In the container configuration, KBP reduces maximum round-trip latency by 21% to 96% and increases the throughput by up to 1.28 times compared with NAPI.
Seiki KOTACHI Takehiro SATO Ryoichi SHINKUMA Eiji OKI
One of the features of a software-defined network (SDN) is a logically centralized control plane hosting one or more SDN controllers. As SDN controller placement can impact network performance, it is widely studied as the controller placement problem (CPP). For a cost-effective network design, network providers need to minimize the number of SDN controllers used in the network since each SDN controller incurs installation and maintenance costs. Moreover, the network providers need to deal with the failure of SDN controllers. Existing studies that consider SDN controller failures use the scheme of connecting each SDN switch to one Master controller and one or more Slave controllers. The problem with this scheme is that the computing capacity of each SDN controller cannot be used efficiently since one SDN controller handles the load of all SDN switches connected to it. The number of SDN controllers required can be reduced by distributing the load of each SDN switch among multiple SDN controllers. This paper proposes a controller placement model that allows the distribution against SDN controller failures. The proposed model determines the ratios of computing capacity demanded by each SDN switch on the SDN controllers connected to it. The proposed model also determines the number and placement of SDN controllers and the assignment of each SDN switch to SDN controllers. Controller placement is determined so that a network provider can continue to manage all SDN switches if no more than a certain number of SDN controller failures occur. We develop two load distribution methods: split and even-split. We formulate the proposed model with each method as integer linear programming problems. Numerical results show that the proposed model reduces the number of SDN controllers compared to a benchmark model; the maximum reduction ratio is 38.8% when the system latency requirement between an SDN switch and an SDN controller is 100[ms], the computing capacity of each SDN controller is 6 × 106[packets/s], and the maximum number of SDN controllers that can fail at the same time is one.
Hequn LI Jiaxi LU Jinfa WANG Hai ZHAO Jiuqiang XU Xingchi CHEN
Real-time and scalable multicast services are of paramount importance to Industrial Internet of Things (IIoT) applications. To realize these services, the multicast algorithm should, on the one hand, ensure the maximum delay of a multicast session not exceeding its upper delay bound. On the other hand, the algorithm should minimize session costs. As an emerging networking paradigm, Software-defined Networking (SDN) can provide a global view of the network to multicast algorithms, thereby bringing new opportunities for realizing the desired multicast services in IIoT environments. Unfortunately, existing SDN-based multicast (SDM) algorithms cannot meet the real-time and scalable requirements simultaneously. Therefore, in this paper, we focus on SDM algorithm design for IIoT environments. To be specific, the paper first converts the multicast tree construction problem for SDM in IIoT environments into a delay-bounded least-cost shared tree problem and proves that it is an NP-complete problem. Then, the paper puts forward a shared tree (ST) algorithm called SDM4IIoT to compute suboptimal solutions to the problem. The algorithm consists of five steps: 1) construct a delay-optimal shared tree; 2) divide the tree into a set of subpaths and a subtree; 3) optimize the cost of each subpath by relaxing the delay constraint; 4) optimize the subtree cost in the same manner; 5) recombine them into a shared tree. Simulation results show that the algorithm can provide real-time support that other ST algorithms cannot. In addition, it can achieve good scalability. Its cost is only 20.56% higher than the cost-optimal ST algorithm. Furthermore, its computation time is also acceptable. The algorithm can help to realize real-time and scalable multicast services for IIoT applications.
A variety of smart services are being provided on multiple virtual networks embedded into a common inter-cloud substrate network. The substrate network operator deploys critical substrate nodes so that multiple service providers can achieve enhanced services due to the secure sharing of their service data. Even if one of the critical substrate nodes incurs damage, resiliency of the enhanced services can be assured due to reallocation of the workload and periodic backup of the service data to the other normal critical substrate nodes. However, the connectivity of the embedded virtual networks must be maintained so that the enhanced services can be continuously provided to all clients on the virtual networks. This paper considers resilient virtual network embedding (VNE) that ensures the connectivity of the embedded virtual networks after critical substrate node failures have occurred. The resilient VNE problem is formulated using an integer linear programming model and a distance-based method is proposed to solve the large-scale resilient VNE problem efficiently. Simulation results demonstrate that the distance-based method can derive a sub-optimum VNE solution with a small computational effort. The method derived a VNE solution with an approximation ratio of less than 1.2 within ten seconds in all the simulation experiments.
Software-defined networking (SDN) decouples the control and forwarding of network devices, providing benefits such as simplified control. However, due to cost constraints and other factors, SDN is difficult to fully deploy. It has been proposed that SDN devices can be incrementally deployed in a traditional IP network, i.e., hybrid SDN, to provide partial SDN benefits. Studies have shown that better traffic engineering performance can be achieved by modifying the coverage and placement of SDN devices in hybrid SDN, because they can influence the behavior of legacy switches through certain strategies. However, it is difficult to develop and execute a traffic engineering strategy in hybrid SDN. This article proposes a routing algorithm to achieve approximate load balancing, which minimizes the maximum link utilization by using the optimal solution of linear programming and merging the minimum split traffic flows. A multipath forwarding mechanism under the same problem is designed to optimize transmission time. Experiments show that our algorithm has certain advantages in link utilization and transmission time compared to traditional distributed routing algorithms like OSPF and some hybrid SDN routing mechanisms. Furthermore, our algorithm can approximate the control effect of full SDN when the deployment rate of SDN devices is 40%.
Hiro TAMURA Kiyoshi YANAGISAWA Atsushi SHIRANE Kenichi OKADA
This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.
Yuya KASE Toshihiko NISHIMURA Takeo OHGANE Yasutaka OGAWA Takanori SATO Yoshihisa KISHIYAMA
Direction of arrival (DOA) estimation of wireless signals is demanded in many applications. In addition to classical methods such as MUSIC and ESPRIT, non-linear algorithms such as compressed sensing have become common subjects of study recently. Deep learning or machine learning is also known as a non-linear algorithm and has been applied in various fields. Generally, DOA estimation using deep learning is classified as on-grid estimation. A major problem of on-grid estimation is that the accuracy may be degraded when the DOA is near the boundary. To reduce such estimation errors, we propose a method of combining two DNNs whose grids are offset by one half of the grid size. Simulation results show that our proposal outperforms MUSIC which is a typical off-grid estimation method. Furthermore, it is shown that the DNN specially trained for a close DOA case achieves very high accuracy for that case compared with MUSIC.
This paper proposes a low-complexity variational Bayesian inference (VBI)-based method for massive multiple-input multiple-output (MIMO) downlink channel estimation. The temporal correlation at the mobile user side is jointly exploited to enhance the channel estimation performance. The key to the success of the proposed method is the column-independent factorization imposed in the VBI framework. Since we separate the Bayesian inference for each column vector of signal-of-interest, the computational complexity of the proposed method is significantly reduced. Moreover, the temporal correlation is automatically uncoupled to facilitate the updating rule derivation for the temporal correlation itself. Simulation results illustrate the substantial performance improvement achieved by the proposed method.
Caixia CAI Wenyang GAN Han HAI Fengde JIA
In this paper, to improve communication system's energy-efficiency (EE), multi-case optimization of two new transmission strategies is investigated. Firstly, with amplify-and-forward relaying and full-duplex technique, two new transmission strategies are designed. The designed transmission strategies consider direct links and non-ideal transmission conditions. At the same time, detailed capacity and energy consumption analyses of the designed transmission strategies are given. In addition, EE optimization and analysis of the designed transmission strategies are studied. It is the first case of EE optimization and it is achieved by joint optimization of transmit time (TT) and transmit power (TP). Furthermore, the second and third cases of EE optimization with respectively optimizing TT and TP are given. Simulations reveal that the designed transmission strategies can effectively improve the communication system's EE.
In this paper, the sum cell rate based on altruistic and egoistic multicell distributed beamforming (MDBF) is studied with local channel state Information (CSI). To start with, we provide two sufficient conditions for implementing altruistic and egoistic strategy based on the traditional method, and give the proof of those condition. Second, a MDBF method based on the altruistic and egoistic strategy is proposed, where the altruistic strategy is implemented with the internal penalty function. Finally, simulation results demonstrate that the effectiveness of the sufficient conditions and the proposed method has the different performance and advantages.
Chen CHEN Wence ZHANG Xu BAO Jing XIA
This paper studies the performance of quantized massive multiple-input multiple-output (MIMO) systems with superimposed pilots (SP), using linear minimum mean-square-error (LMMSE) channel estimation and maximum ratio combining (MRC) detection. In contrast to previous works, arbitrary-bit analog-to-digital converters (ADCs) are considered. We derive an accurate approximation of the uplink achievable rate considering the removal of estimated pilots. Based on the analytical expression, the optimal pilot power factor that maximizes the achievable rate is deduced and an expression for energy efficiency (EE) is given. In addition, the achievable rate and the optimal power allocation policy under some asymptotic limits are analyzed. Analysis shows that the systems with higher-resolution ADCs or larger number of base station (BS) antennas need to allocate more power to pilots. In contrast, more power needs to be allocated to data when the channel is slowly varying. Numerical results show that in the low signal-to-noise ratio (SNR) region, for 1-bit quantizers, SP outperforms time-multiplexed pilots (TP) in most cases, while for systems with higher-resolution ADCs, the SP scheme is suitable for the scenarios with comparatively small number of BS antennas and relatively long channel coherence time.
Tomoki KAGA Mamoru OKUMURA Eiji OKAMOTO Tetsuya YAMAMOTO
In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.
Jun NAGAI Koji ISHIBASHI Yasushi YAMAO
The non-orthogonal multiple access (NOMA) approach has been developed in the fifth-generation mobile communication systems (5G) and beyond, to improve the spectrum efficiency and accommodate a large number of IoT devices. Although power domain NOMA is a promising candidate, it is vulnerable to the nonlinearity of RF circuits and cannot achieve high-throughput transmission using high-level modulations in nonlinear environments. This study proposes a novel post-reception nonlinear compensation scheme consisting of two blind nonlinear compensators (BNLCs) and a frequency-domain equalizer (FDE) to reduce the effect of nonlinear distortion. The improvement possible with the proposed scheme is evaluated by using the error vector magnitude (EVM) of the received signal, which is obtained through computer simulations. The simulation results confirm that the proposed scheme can effectively improve the quality of the received downlink power-domain NOMA signal and enable high-throughput transmission under the transmitter (Tx) and receiver (Rx) nonlinearities via a frequency-selective fading channel.
Satoshi DENNO Kazuma HOTTA Yafei HOU
This paper proposes a novel maximum Doppler frequency detection technique for user moving velocity estimation. The maximum Doppler frequency is estimated in the proposed detection technique by making use of the fact that user moving velocity is not distributed continuously. The fluctuation of the channel state information during a packet is applied for the proposed detection, in which likelihood estimation is performed by comparing the fluctuation with the thresholds. The thresholds are theoretically derived on the assumption that the fluctuation is distributed with an exponential function. An approximated detection technique is proposed to simplify the theoretical threshold derivation. The performance of the proposed detection is evaluated by computer simulation. The proposed detection accomplishes better detection performance as the fluctuation values are summed over more packets. The proposed detection achieves about 90% correct detection performance in a fading channel with the Eb/N0 = 35dB, when the fluctuation values are summed over only three packets. Furthermore, the approximated detection also achieves the same detection performance.
Denghui YAO Xiaoyong ZHANG Zhengbo SUN Dexiu HU
Long-term coherent integration can significantly improve the ability to detect maneuvering targets by radar. Especially for weak targets, longer integration times are needed to improve. But for non-radially moving targets, the time-varying angle between target moving direction and radar line of sight will cause non-linear range migration (NLRM) and non-linear Doppler frequency migration (NLDFM) within long-time coherent processing, which precludes existing methods that ignore angle changes, and seriously degrades the performance of coherent integration. To solve this problem, an efficient method based on Radon Fourier transform (RFT) with modified variant angle model (ARFT) is proposed. In this method, a new parameter angle is introduced to optimize the target motion model, and the NLRM and NLDFM are eliminated by range-velocity-angle joint three-dimensional searching of ARFT. Compared with conventional algorithms, the proposed method can more accurately compensate for the NLRM and NLDFM, thus achieving better integration performance and detection probability for non-radial moving weak targets. Numerical simulations verify the effectiveness and advantages of the proposed method.
Yanyan ZHANG Meiling SHEN Wensheng YANG
We propose a target detection network (RMF-Net) based on the multi-scale strategy to solve the problems of large differences in the detection scale and mutual occlusion, which result in inaccurate locations. A multi-layer feature fusion module and multi-expansion dilated convolution pyramid module were designed based on the ResNet-101 residual network. The ability of the network to express the multi-scale features of the target could be improved by combining the shallow and deep features of the target and expanding the receptive field of the network. Moreover, RoI Align pooling was introduced to reduce the low accuracy of the anchor frame caused by multiple quantizations for improved positioning accuracy. Finally, an AD-IoU loss function was designed, which can adaptively optimise the distance between the prediction box and real box by comprehensively considering the overlap rate, centre distance, and aspect ratio between the boxes and can improve the detection accuracy of the occlusion target. Ablation experiments on the RMF-Net model verified the effectiveness of each factor in improving the network detection accuracy. Comparative experiments were conducted on the Pascal VOC2007 and Pascal VOC2012 datasets with various target detection algorithms based on convolutional neural networks. The results demonstrated that RMF-Net exhibited strong scale adaptability at different occlusion rates. The detection accuracy reached 80.4% and 78.5% respectively.