The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E91-B No.4  (Publication Date:2008/04/01)

    Regular Section
  • Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    Yi-Cheng CHAN  Chia-Liang LIN  Cheng-Yuan HO  

     
    PAPER-Network

      Page(s):
    987-997

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  • Clear Channel Assessment in Ultra-Wideband Sensor Networks

    Bin ZHEN  Huan-Bang LI  Ryuji KOHNO  

     
    PAPER-Network

      Page(s):
    998-1005

    Impulse ultra-wideband (UWB) is an attractive technology for large ad hoc sensor networks due to its precise ranging capacity, multi-path fading robustness and low radiation power. The transient and carrier-less nature of low radiation pulse and harsh multipath channel condition makes it cumbersome to implement carrier sensing. We proposed clear channel assessment (CCA) based on preamble-assisted modulation (PAM) for UWB sensor networks. Preamble symbols are periodically inserted into the frame payload in the time domain to serve as regular feature for reliable CCA. We simulated the CCA performance in the multipath UWB channel model developed by IEEE 802.15.4a. PAM and CCA configurations were optimized for the distributed carrier sense multiple access protocol. PAM was accepted by 802.15.4a group as an optional feature. Furthermore, the multiplexed preamble symbols can be exploited for channel estimation to improve communication and ranging.

  • Signal Strength Based Energy Efficient Routing for Ad Hoc Networks

    Masaki BANDAI  Satoshi NAKAYAMA  Takashi WATANABE  

     
    PAPER-Network

      Page(s):
    1006-1014

    In this paper, we propose a novel energy-efficient route-discovery scheme with transmission power control (TPC) for ad hoc networks. The proposed scheme is very simple and improves energy efficiency without any information about neighbor nodes. In the proposed scheme, when a node receives a route request (RREQ), the node calculates the routing-level backoff time as being inversely proportional to the received power of the RREQ. After the route discovery, source and intermediate nodes transmit packets by the power-controlled medium access control (MAC) protocol. In addition, we propose an extended version of the proposed scheme for discrete power control devices. Simulation results demonstrate the proposed schemes can discover more energy efficient routes than the conventional schemes.

  • Performance Models for MPI Collective Communications with Network Contention

    Hyacinthe NZIGOU MAMADOU  Takeshi NANRI  Kazuaki MURAKAMI  

     
    PAPER-Network

      Page(s):
    1015-1024

    The paper presents a novel approach to estimate the performance of MPI collective communications. Our objective is to help researchers to make appropriate decisions on their message-passing applications. For each collective communication, we attempt to apply LogGP and P-LogP standard point-to-point models. The resulted models are compared with the empirical data in order to identify the most suitable for performance characterization of collective operations. For the communications on large clusters with large size messages, the network contention problem can significantly affect the performance. Hence, to reduce the relative gap between the prediction and the measured runtime, the contention issue is also modeled, by a queuing theory analysis method, and taken in account with the total performance estimation. The experiments performed on a cluster which consists of 64 processors interconnected by Gigabit Ethernet network show encouraging results. For any collective operation, given a number of processors and a range of message sizes, there is at least one model that predicts the performance precisely. We could achieve a gap between the predicted and the measured run-time around 15%. Thus, by handling the contention problem, we could reduce around 80% of the relative gap.

  • Channel-Aware Distributed Throughput-Based Fair Queueing for Wired and Wireless Packet Communication Networks

    Sang-Yong KIM  Hideaki TAKAGI  

     
    PAPER-Network

      Page(s):
    1025-1033

    Fair queueing is a service scheduling discipline to pursue the fairness among users in packet communication networks. Many fair queueing algorithms, however, have problems of computational overhead since the central scheduler has to maintain a certain performance counter for each flow of user packets based on the global virtual time. Moreover, they are not suitable for wireless networks with high probability of input channel errors due to the lack or complexity in the compensation mechanism for the recovery from the error state. In this paper, we propose a new, computationally efficient, distributed fair queueing scheme, which we call Channel-Aware Throughput Fair Queueing (CATFQ), that is applicable to both wired and wireless packet networks. In our CATFQ scheme, each flow is equipped with a counter that measures the weighted throughput achievement while it has a backlog of packets. At the end of every service to a packet, the scheduler simply selects a flow with the minimum counter value as the one from which a packet is served next. We show that the difference between any two throughput counters is bounded. Our scheme significantly reduces the scheduler's computational overhead and guarantees fair throughput for all flows. For wireless networks with error-prone channels, the service chance lost in bad channel condition is compensated quickly as the channel recovers. Our scheme suppresses the service for leading flows, brings short-term fairness for flows without channel errors, and achieves long-term fairness for all flows. These merits are verified by simulation.

  • A Unified Handover Management Scheme Based on Frame Retransmissions for TCP over WLANs Open Access

    Kazuya TSUKAMOTO  Shigeru KASHIHARA  Yuji OIE  

     
    PAPER-Network

      Page(s):
    1034-1046

    In ubiquitous networks based on Wireless Local Area Networks (WLANs) with limited individual coverage, mobile nodes will be likely to traverse different WLANs during TCP communication. An effective handover management scheme for achieving seamless and efficient communication throughout the handover operation is therefore crucial. To achieve this, the following three requirements are essential: (i) early initiation of handover, (ii) elimination of communication interruption upon handover, (iii) selection of an optimal WLAN. The handover scheme proposed in this study employs frame retransmission over WLAN as an indicator of link degradation, and a handover manager (HM) on the transport layer obtains the number of frame retransmissions on the MAC layer using a cross-layer architecture in order to achieve (i) and (iii). Then, it also employs multi-homing in order to achieve (ii). Simulations demonstrate that the proposed scheme can satisfy all of the three requirements and is capable of maintaining TCP performance throughout the handover operation.

  • A Practical Method for UHF RFID Interrogation Area Measurement Using Battery Assisted Passive Tag

    Jin MITSUGI  Osamu TOKUMASU  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1047-1054

    For the success of a large deployment of UHF RFID, easy-to-use and low-cost engineering tools to facilitate the performance evaluation are demanded particularly in installations and for trouble shooting. The measurement of interrogation area is one of the most typical industrial demands to establish the stable readability of UHF RFID. Exhaustive repetition of tag position change with a read operation and a usage of expensive measurement equipment or special interrogators are common practices to measure the interrogation area. In this paper, a practical method to measure the interrogation area of a UHF RFID by using a battery assisted passive tag (BAP) is presented. After introducing the fundamental design and performances of the BAP that we have developed, we introduce the measurement method. In the method, the target tag in the target installation is continuously traversed either manually or automatically while it is subjected to a repetitive read of a commercial interrogator. During the target tag traversal, the interrogator's commands are continuously monitored by a BAP. With an extensive analysis on interrogator commands, the BAP can differentiate between its own read timings and those of the target tag. The read timings of the target tag collected by the BAP are recorded synchronously with the target tag position, yielding a map of the interrogation area. The present method does not entail a measurement burden. It is also independent of the choice of interrogator and tag. The method is demonstrated in a practical UHF RFID installation to show that the method can measure a 40 mm resolution interrogation area measurement just by traversing the target tag at a slow walking speed, 300 mm/sec.

  • Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Ken TANAKA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1055-1062

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  • Power and Rate Adaptation Based on Imperfect Channel Estimation over MIMO Fading Channels

    Alireza KOBRAVI  Mohammad SHIKH-BAHAEI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1063-1067

    We derive the optimum power and rate adaptation for maximizing the spectral efficiency of Multilevel Quadrature Amplitude Modulation (MQAM) over Multiple-Input Multiple-Output (MIMO) fading channels based on imperfect channel estimation. We use Pilot Symbol Assisted Modulation (PSAM)-based Minimum Mean Square Error (MMSE) channel estimator, and show that the optimum power adaptation on each sub-channel is a generalization of water-filling. We also show that the conventional water-filling (with bias) strategy for power adaptation is a suboptimum solution of the general optimization problem and it tends to the optimal solution as the correlation coefficients between eigenvalues of the true channel matrix and its estimate tend to one.

  • Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    Yoshiaki YOKOYAMA  Minseok KIM  Hiroyuki ARAI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1068-1075

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  • A Low-Complexity Bock Linear Smoothing Channel Estimation for SIMO-OFDM Systems without Cyclic Prefix

    Jung-Lang YU  Chia-Hao CHEN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1076-1083

    Orthogonal frequency-division multiplexing (OFDM) systems often use a cyclic prefix (CP) to simplify the equalization design at the cost of bandwidth efficiency. To increase the bandwidth efficiency, we study the blind equalization with linear smoothing [1] for single-input multiple-output (SIMO) OFDM systems without CP insertion in this paper. Due to the block Toeplitz structure of channel matrix, the block matrix scheme is applied to the linear smoothing channel estimation, which equivalently increases the number of sample vectors and thus reduces the perturbation of sample autocorrelation matrix. Compared with the linear smoothing and subspace methods, the proposed block linear smoothing requires the lowest computational complexity. Computer simulations show that the block linear smoothing yields a channel estimation error smaller than that from linear smoothing, and close to that of the subspace method. Evaluating by the minimum mean-square error (MMSE) equalizer, the block linear smoothing and subspace methods have nearly the same bit-error-rates (BERs).

  • Studies on an Iterative Frequency Domain Channel Estimation Technique for MIMO-UWB Communications

    Masaki TAKANASHI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1084-1094

    MIMO (Multiple-Input Multiple-Output) technologies have attracted much interest for high-rate and high-capacity wireless communications. MIMO technologies under frequency-selective fading environments (wideband MIMO technologies) have also been studied. A wideband MIMO system is affected by ISI (Inter Symbol Interference) and CCI (Co-Channel Interference). Hence, we need a MIMO signal detection technique that simultaneously suppresses ISI and CCI. The OFDM system and SC-FDE (Single Carrier-Frequency Domain Equalization) techniques are often used for suppressing ISI. By employing these techniques with the ZF (Zero Forcing) or the MMSE (Minimum Mean Square Error) spatial filtering technique, we can cancel both ISI and CCI. To use ZF or MMSE, we need channel state information for calculating the receive weights. Although an LS (Least Square) channel estimation technique has been proposed for MIMO-OFDM systems, it needs a large estimation matrix at the receiver side to obtain sufficient estimation performance in heavy multipath environments. However, the use of a large matrix increases computational complexity and the circuit size. We use frequency domain channel estimation to solve these problems and propose an iterative method for achieving better estimation performance. In this paper, we assume the use of a MIMO-UWB system that employs a UWB-IR (Ultra-Wideband Impulse Radio) scheme with the FDE technique as the wideband wireless transmission scheme for heavy multipath environments, and we evaluate the iterative frequency domain channel estimation through computer simulations and computational complexity calculations.

  • Channel Estimation Technique Assisted by Postfixed PN Sequences with Zero Padding for Wireless OFDM Communications

    Jung-Shan LIN  Hong-Yu CHEN  Jia-Chin LIN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1095-1102

    This paper proposes a channel estimation technique which uses a postfixed pseudo-noise (PN) sequence combined with zero padding to accurately estimate the channel impulse response for mobile orthogonal frequency division multiplexing (OFDM) communications. The major advantage of the proposed techniques is the periodical insertion of PN sequences after each OFDM symbol within the original guard interval in conventional zero-padded OFDM or within the original cyclic prefix (CP) in conventional CP-OFDM. In addition, the proposed technique takes advantage of null samples padded after the PN sequences for reducing inter-symbol interference occurring with the information detection in conventional pseudo-random-postfix OFDM. The proposed technique successfully applies either (1) least-squares algorithm with decision-directed data-assistance, (2) approximate least-squares estimation, or (3) maximum-likelihood scheme with various observation windows for the purpose of improving channel estimation performance. Some comparative simulations are given to illustrate the excellent performance of the proposed channel estimation techniques in mobile environments.

  • Anti-Interference Receiver Structures for Direct Sequence Spread Spectrum Signals

    Li-Der JENG  Fang-Biau UENG  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1103-1111

    Conventional narrowband interference (NBI) rejection algorithms often assumed perfect pseudo-noise (PN) code synchronization. The functions of NBI rejection and code tracking are performed separately and independently by an adaptive filter and a code tracking loop, respectively. This paper presents two new receiver structures for direct sequence spread spectrum (DS/SS) systems, one operates in coherent mode and the other operates in noncoherent mode. Both receivers are designed to suppress NBI and minimize tracking jitter. Numerical results show that the proposed coherent receiver performs as good as the conventional receiver that uses an LMS NBI rejection filter with zero tracking jitter. The noncoherent receiver, when compared with the coherent one, suffers less than 3 dB degradation for bit error probability smaller than 10-3.

  • MIMO-OFDM MAP Receiver with Spatial-Temporal Filters Employing Decision-Directed Recursive Eigenvalue Decomposition Parameter Estimation

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1112-1121

    This paper proposes a new parameter estimation method for the MIMO-OFDM MAP receiver with spatial-temporal filters. The proposed method employs eigenvalue decomposition (EVD) so as to attain precise estimates especially under interference-limited conditions in MIMO-OFDM mobile communications. Recursive EVD is introduced to reduce the computational complexity compared to the nonrecursive EVD. The spatial-temporal prewhitening is placed prior to FFT because this arrangement is superior to that of conventional prewhitening posterior to FFT in accuracy of the parameter estimation. In order to improve tracking capability to fast fading, the proposed scheme applies a decision-directed algorithm to the parameter estimation by using log-likelihood ratios of coded bits. Computer simulations demonstrate that the proposed scheme can track fast fading and reduce the complexity to 18 percents of the conventional one, and that the spatial-temporal filtering prior to FFT outperforms the conventional one posterior to FFT.

  • Performance Analysis of IEEE 802.11 DCF and IEEE 802.11e EDCA in Non-saturation Condition

    Tae Ok KIM  Kyung Jae KIM  Bong Dae CHOI  

     
    PAPER-Terrestrial Radio Communications

      Page(s):
    1122-1131

    We analyze the MAC performance of the IEEE 802.11 DCF and 802.11e EDCA in non-saturation condition where device does not have packets to transmit sometimes. We assume that a flow is not generated while the previous flow is in service and the number of packets in a flow is geometrically distributed. In this paper, we take into account the feature of non-saturation condition in standards: possibility of transmission performed without preceding backoff procedure for the first packet arriving at the idle station. Our approach is to model a stochastic behavior of one station as a discrete time Markov chain. We obtain four performance measures: normalized channel throughput, average packet HoL (head of line) delay, expected time to complete transmission of a flow and packet loss probability. Our results can be used for admission control to find the optimal number of stations with some constraints on these measures.

  • Experimental Analysis and Site-Specific Modeling of Channel Parameters at Mobile Station in an Urban Macrocellular Environment

    Kriangsak SIVASONDHIVAT  Jun-ichi TAKADA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER-Antennas and Propagation

      Page(s):
    1132-1144

    This paper experimentally studies and models the angular-delay power spectrum density at the mobile station based on the site-specific measurement in a macrocell in urban area of Tokyo. The authors first show the azimuth power spectral density at the mobile station. It is decomposed into the "classes" which represent specific contributions within limited azimuth range, as well as the residual. The site-specific propagation mechanism of the classes are next discussed. Finally, the angular-delay PSD models of both classes and residual are proposed and verified. The analysis and modeling in this paper are antenna independent with the full polarimetric information. Consequently, the results are useful to evaluate the performance of arbitrary array antennas with mixed polarization. Due to the rare number of antenna-independent and full-polarimetric measurements, the significant contribution of the angular-delay PSD channel model can be expected.

  • A Stopping Criterion for Low-Density Parity-Check Codes

    Donghyuk SHIN  Jeongseok HA  Kyoungwoo HEO  Hyuckjae LEE  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1145-1148

    We propose a new stopping criterion for decoding LDPC codes which consists of a measure of decoder behaviors and a decision rule to predict decoding failure. We will show that the proposed measure, the number of satisfied check nodes, does not need (or minimizes) additional complexity, and the decision rule is efficient and more importantly channel independent, which was not possible in the previous work.

  • Power Control of Turbo Coded System in Lognormal Shadowing Channel

    Sung-Joon PARK  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1149-1152

    Traditionally, it has been considered that the received signal to noise power ratio should be uniformly preserved to maximize system capacity for uncoded system with reliable feedback channel. However, once channel coding is employed as a building block, another power control scheme presents better performance. In this paper, we consider several power reallocation schemes for an effective use of limited power in a turbo coded system in lognormal shadowing channel. We show that the proposed power reallocation can reduce the decoding error probability by almost two orders of magnitude and provide a power gain of 0.87 dB at a target bit error rate of 10-4 over the equal power allocation among all code symbols. We also propose applying different power levels and cut-off thresholds on systematic and parity bits, and investigate the effect of channel estimation error.

  • Energy Consumption Analysis of the S-MAC Protocol with Contending Nodes under Unsaturated Conditions

    Seokjin SUNG  Seok WOO  Kiseon KIM  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1153-1157

    We analyze the energy consumption of the sensor-medium access control (S-MAC) protocol, where contending nodes exist. Because all nodes running the S-MAC within a virtual cluster always behave with a fixed frame length, the behavior should be analyzed based on its frame. Hence, reflecting the frame architecture, we first present an analytic model for the S-MAC behavior with a discrete-time Markov chain, and then we analyze energy consumption under unsaturated conditions.

  • Packet Detection for Zero-Padded OFDM Transmission

    Kyu-Min KANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    1158-1160

    A packet detection method for zero-padded orthogonal frequency division multiplexing (OFDM) transmission is presented. The proposed algorithm effectively conducts packet detection by employing both an M-sample time delayed cross correlation value, and a received signal power calculated by using the received input samples corresponding to the zero padding (ZP) intervals or less.

  • Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform

    Sang-Heon SHIN  Chul KIM  Sang Kyu PARK  

     
    LETTER-Network

      Page(s):
    1161-1163

    With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.

  • Establishing Multiple Paths for Multihoming on SCTP in MANET

    Ki-Il KIM  

     
    LETTER-Network

      Page(s):
    1164-1167

    In this letter, we propose new modifications of current routing protocol to fully utilize the multihoming functionality of SCTP over MANET. To achieve this, multiple address allocation and disjoint path setup schemes in a reactive routing protocol are developed under a cross-layer concept. We demonstrate that two newly added features contribute to higher SCTP throughput than original one.

  • Performance Comparison of Binary Search Tree and Framed ALOHA Algorithms for RFID Anti-Collision

    Wen-Tzu CHEN  

     
    LETTER-Network

      Page(s):
    1168-1171

    Binary search tree and framed ALOHA algorithms are commonly adopted to solve the anti-collision problem in RFID systems. In this letter, the read efficiency of these two anti-collision algorithms is compared through computer simulations. Simulation results indicate the framed ALOHA algorithm requires less total read time than the binary search tree algorithm. The initial frame length strongly affects the uplink throughput for the framed ALOHA algorithm.

  • Performance Evaluation of Adaptive Probabilistic Search in P2P Networks

    Haoxiang ZHANG  Lin ZHANG  Xiuming SHAN  Victor O.K. LI  

     
    LETTER-Network

      Page(s):
    1172-1175

    The overall performance of P2P-based file sharing applications is becoming increasingly important. Based on the Adaptive Resource-based Probabilistic Search algorithm (ARPS), which was previously proposed by the authors, a novel probabilistic search algorithm with QoS guarantees is proposed in this letter. The algorithm relies on generating functions to satisfy the user's constraints and to exploit the power-law distribution in the node degree. Simulation results demonstrate that it performs well under various P2P scenarios. The proposed algorithm provides guarantees on the search performance perceived by the user while minimizing the search cost. Furthermore, it allows different QoS levels, resulting in greater flexibility and scalability.

  • Joint Receive Antenna Selection for Multi-User MIMO Systems with Vector Precoding

    Wei MIAO  Yunzhou LI  Shidong ZHOU  Jing WANG  Xibin XU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1176-1179

    Vector precoding is a nonlinear broadcast precoding scheme in the downlink of multi-user MIMO systems which outperforms linear precoding and THP (Tomlinson-Harashima Precoding). This letter discusses the problem of joint receive antenna selection in the multi-user MIMO downlink with vector precoding. Based on random matrix analysis, we derive a simple heuristic selection criterion using singular value decomposition (SVD) and carry out an exhaustive search to determine for each user which receive antenna should be used. Simulation results reveal that receive antenna selection using our proposed criterion obtains the same diversity order as the optimal selection criterion.

  • Iterative Decoding Algorithm in the Adaptive Modulation and Coding System with MIMO Schemes

    Sangjin RYOO  Kyunghwan LEE  Cheolwoo YOU  Intae HWANG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1180-1184

    In this paper, we propose and analyze the adaptive modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC (Adaptive Modulation and Coding) using the conventional Turbo Coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed iterative decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In this analysis, the MIMO (Multiple Input Multiple Output) and the STD (Selection Transmit Diversity) schemes are assumed to be parts of the system for performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the whole SNR (Signal to Noise Ratio) range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm. In addition, the simulation result shows that the maximum throughput improvement in each MIMO scheme is respectively about 350 kbps, 460 kbps, and 740 kbps. It is suggested that the effect of the proposed iterative decoding algorithm accordingly gets higher as the number of system antenna increases.

  • Full-Rate STBCs from Coordinate Interleaved Orthogonal Designs in Time-Selective Fading Channels

    Hoojin LEE  Jeffrey G. ANDREWS  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1185-1189

    Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.

  • A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e

    Dinh Thi Thuy NGA  MinGon KIM  Minho KANG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1190-1193

    Sleep-mode operation of a Mobile Subscriber Station (MSS) in IEEE 802.16e effectively saves energy consumption; however, it induces frame response delay. In this letter, we propose an algorithm to quickly find the optimal value of the final sleep interval in sleep-mode in order to minimize energy consumption with respect to a given frame response delay constraint. The validations of our proposed algorithm through analytical results and simulation results suggest that our algorithm provide a potential guidance to energy saving.

  • PAPR Reduction of OFDM Signals Using Genetic Algorithm PTS Technique

    Sung-Soo KIM  Myoung-Je KIM  T. Aaron GULLIVER  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1194-1197

    The performance of an orthogonal frequency division multiplexing (OFDM) system is degraded if the peak-to-average power ratio (PAPR) is high. In general, in order to obtain optimal PAPR reduction using the partial transmitted sequence (PTS) technique, an exhaustive search of the possible subblocks and rotation factors must be done. As the number of subblocks and rotation factors increases, PAPR reduction improves, but the computational load becomes impractical. In order to reduce the complexity while still improving the OFDM system performance, a new method using a genetic algorithm (GA) is proposed to find a set of rotation factors that reduces both the PAPR and the computational load. A comparison is made between the proposed method and previously developed techniques such as exhaustive and gradient descent PTS methods. The superiority of the proposed method is demonstrated as a reduction in computational load compared with exhaustive PTS and the gradient method, and an improvement in performance compared with the iterative and gradient methods.

  • A Partitioned-SLM with Low Complexity for OFDM PAPR Reduction

    Suckchel YANG  Yoan SHIN  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1198-1202

    We propose the P-SLM (Partitioned-SeLected Mapping) scheme with low complexity for PAPR reduction of OFDM signals. In the proposed scheme, a symbol sequence in the frequency domain is partitioned into several sub-blocks which are multiplied by different orthogonal phase sequences whose length and number are shorter and smaller than those used in the conventional SLM. Then, among various sequences in the time domain generated after the IFFT for the SLM sub-blocks, the sub-block combination with the lowest PAPR is selected and transmitted. Simulation results show that the proposed P-SLM scheme significantly reduces the number of IFFT calculation and multiplication than the conventional SLM without loss of PAPR reduction performance.

  • Channel Estimation and ICI Cancellation for OFDM Systems in Fast Time-Varying Environments

    Likun ZOU  Qing CHANG  Chundi XIU  Qishan ZHANG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1203-1206

    In order to estimate fast time-varying channels exactly, the Inter-Carrier Interference (ICI) caused by time-varying fading channels in Orthogonal Frequency Division Multiplexing (OFDM) systems is analyzed based on the Basis Expansion Model (BEM). A channel estimation and ICI cancellation algorithm with low complexity is proposed. A special pilot sequence is designed to minimize the cost of computing the channel state information in the proposed algorithm. Based on the property of channel frequency impulse matrix, the ICI can be canceled iteratively in frequency domain. The complexity of the algorithm is analyzed theoretically. Through simulation, the algorithm is shown to be effective in estimating channel state information and in cancelling ICI.

  • A New Blind Equalization Method Based on Negentropy Minimization for Constant Modulus Signals

    Sooyong CHOI  Jong-Moon CHUNG  Wun-Cheol JEONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1207-1210

    A new blind adaptive equalization method for constant modulus signals based on minimizing the approximate negentropy of the estimation error for a finite-length equalizer is presented. We consider the approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve the performance of a linear equalizer using the conventional constant modulus algorithm (CMA). Negentropy includes higher order statistical information and its minimization provides improved convergence, performance, and accuracy compared to traditional methods, such as the CMA, in terms of the bit error rate (BER). Also, the proposed equalizer shows faster convergence characteristics than the CMA equalizer and is more robust to nonlinear distortion than the CMA equalizer.

  • Downlink Coverage and Capacity of a Distributed Repeater System in a WCDMA Multicell Environment

    JaeSeon JANG  NohHoon MYUNG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1211-1214

    In this letter, the influence of the downlink average ratio of the other cell interference to other-user interference in the serving cell (DARI) on the distributed repeater system (DRS) performance is analyzed. It is found that the improvement of DARI depends on a propagation path loss environment. Applying the computed DARI to a 3-RS DRS cell, as high as 13.9% capacity enhancement was obtained when the path loss exponent is 4.5. In addition, by using the power allocation equation, it is expected that a hexagonal DRS cell without coverage holes or excessive coverage overlap can be realized.

  • Evaluation of Digital-to-RF Upconversion Transmitter Using Harmonic Images of DAC Output

    Minseok KIM  Tatsuo FUJI  Takafumi NAKABAYASHI  Hiroyuki ARAI  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1215-1218

    This letter evaluates a transmitter architecture using harmonic images in D/A conversion for generating RF signals. In generating harmonic images, the problems such as intermodulation distortion of DAC were investigated. We developed an evaluation system with two bandpass filter and a buffer amplifier. It was experimentally found that the RF signal up to around 400 MHz can be generated by a commonly used 14-bit DAC at the sampling rates of around 40 MHz with EVM less than 6.6%. This letter also presents a more feasible transmitter example having an IF stage with harmonic image extraction scheme and a typical RF upconversion stage.

  • Efficient Transmit Power Allocation with Partial Feedback for Closed-Loop SQRD Based V-BLAST Systems

    Hoiyoon JUNG  Jongsub CHA  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1219-1222

    This letter proposes an efficient transmit power allocation using partial channel information feedback for the closed-loop sorted QR decomposition (SQRD) based V-BLAST systems. For the feedback information, the positive real-valued diagonal elements of R are forwarded to the transmitter. With the proposed transmit power allocation that is numerically derived by the Lagrange optimization method, the bit error rate performance of the system can be remarkably improved compare to the conventional open-loop SQRD based V-BLAST systems without increasing the receiver complexity.

  • A Novel Precoding Design for MIMO Broadcast Channel

    Huan SUN  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1223-1226

    The problem of joint orthogonal precoding and user scheduling in a multi-user multi-input multi-output (MU-MIMO) downlink system is considered. Based on the theoretics of subspace and vector projection, a novel orthogonal precoding matrix is designed to achieve high sum-rate capacity with low to moderate number of active users and in low SNR regions. With respect to sum-rate capacity, numerical simulations show that the proposed algorithm outperforms the zero-forcing beam-forming (ZFBF) and linear orthogonal beam-forming (OLBF).

  • Rate Adaptation Based on Collision Probability for IEEE 802.11 WLANs

    Taejoon KIM  Jong-Tae LIM  

     
    LETTER-Terrestrial Radio Communications

      Page(s):
    1227-1230

    Nowadays IEEE 802.11 wireless local area networks (WLANs) support multiple transmission rates. To achieve the best performance, transmitting stations adopt the various forms of automatic rate fallback (ARF). However, ARF suffers from severe performance degradation as the number of transmitting stations increases. In this paper, we propose a new rate adaptation scheme which adjusts the ARF's up/down threshold according to the channel contention level. Simulation result shows that the proposed scheme achieves fairly good performance compared with the existing schemes.

  • On the Achievable Efficiency-Fairness Tradeoff in Utility-Optimal MAC Protocols

    Jang-Won LEE  Mung CHIANG  A. Robert CALDERBANK  

     
    LETTER-Terrestrial Radio Communications

      Page(s):
    1231-1234

    We use the network utility maximization (NUM) framework to create an efficient and fair medium access control (MAC) protocol for wireless networks. By adjusting the parameters in the utility objective functions of NUM problems, we control the tradeoff between efficiency and fairness of radio resource allocation through a rigorous and systematic design. In this paper, we propose a scheduling-based MAC protocol. Since it provides an upper-bound on the achievable performance, it establishes the optimality benchmarks for comparison with other algorithms in related work.

  • Wideband DOA Estimation Using a Frequency-Domain Frequency-Invariant Beamformer and a Matrix Pencil Method

    Jinhwan KOH  Weiwei ZHOU  Taekon KIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    1235-1238

    We describe an extension of the wideband direction-of-arrival (DOA) estimation method using a frequency-domain frequency-invariant beamformer (FDFIB). The technique uses the Matrix Pencil Method (MPM) instead of conventional methods based on the eigen-structure of the input covariance matrix. MPM offers excellent resolution compared to conventional methods.

  • Investigation of Electromagnetic Characteristics for Mobile Handsets with Monopole-Type and Inverted-F Wire Antennas

    Jeong I. KIM  Dongweon YOON  

     
    LETTER-Antennas and Propagation

      Page(s):
    1239-1242

    Comparison of the electromagnetic characteristics of a monopole-type wire antenna (MTWA) and an inverted-F wire antenna (IFWA) is performed based on numerical and experimental results. Radiation characteristics, when the handset model is located in the vicinity of a head phantom or in free space, are also investigated. The gain of 8.27 dBi is achieved at 3.4 GHz for the MTWA with the head phantom.

  • Restorability of Rayleigh Backscatter Traces Measured by Coherent OTDR with Precisely Frequency-Controlled Light Source

    Mutsumi IMAHAMA  Yahei KOYAMADA  Kazuo HOGARI  

     
    LETTER-Sensing

      Page(s):
    1243-1246

    This letter presents the first experimental results that confirm the restorability of Rayleigh backscatter traces from a single-mode fiber measured by using a coherent optical time domain reflectometer (OTDR) with a precisely frequency-controlled light source. Based on this restorability, we can measure the distributed strain and temperature along the fiber with a very high measurand resolution that is one to two orders of magnitude better than that provided by Brillouin-based techniques for a long length of fiber.

  • Motion Information Inferring Scheme for Multi-View Video Coding

    Han-Suh KOO  Yong-Joon JEON  Byeong-Moon JEON  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    1247-1250

    This letter proposes a motion information inferring scheme for multi-view video coding motivated by the idea that the aspect of motion vector between the corresponding positions in the neighboring view pair is quite similar. The proposed method infers the motion information from the corresponding macroblock in the neighboring view after RD optimization with the existing prediction modes. This letter presents evaluation showing that the method significantly enhances the efficiency especially at high bit rates.

  • Physical Database Design for Efficient Time-Series Similarity Search

    Sang-Wook KIM  Jinho KIM  Sanghyun PARK  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    1251-1254

    Similarity search in time-series databases finds such data sequences whose changing patterns are similar to that of a query sequence. For efficient processing, it normally employs a multi-dimensional index. In order to alleviate the well-known dimensionality curse, the previous methods for similarity search apply the Discrete Fourier Transform (DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes. Other than this ad-hoc approach, there have been no research efforts on devising a systematic guideline for choosing the best organizing attributes. This paper first points out the problems occurring in the previous methods, and proposes a novel solution to construct optimal multi-dimensional indexes. The proposed method analyzes the characteristics of a target time-series database, and identifies the organizing attributes having the best discrimination power. It also determines the optimal number of organizing attributes for efficient similarity search by using a cost model. Through a series of experiments, we show that the proposed method outperforms the previous ones significantly.