The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Jun MA(30hit)

1-20hit(30hit)

  • Adaptive QoS Management for Multimedia Applications in Heterogeneous Environments: A Case Study with Video QoS Mediation

    Tatsuya YAMAZAKI  Jun MATSUDA  

     
    PAPER

      Vol:
    E82-B No:11
      Page(s):
    1801-1807

    In this paper we present a Quality of Service (QoS) management architecture for distributed multimedia applications in heterogeneous communication environments of wired and wireless networks. Gaps in network performance such as bandwidths and error rates between wired and wireless networks, as well as gaps in terminal performance in media handling between desktop computers and handheld computers, bring about heterogeneities. Furthermore, even performance gaps among various desktop computers cause heterogeneities. As a result of these heterogeneities in network and terminal performances and various user preferences, the QoS requirement from each receiver is different. Therefore, mechanisms that adjust and satisfy each QoS requirement are needed. We propose a proxy server called Communication Coordination Server (CCS), which intermediates a video server and a receiver and manages the QoS coordination. The CCS performs QoS admission, adjustment, and allocation mechanisms to satisfy the user's QoS requirement. Then transcoding is used to realize the allocated QoS, and it decodes the input video stream from the video server and encodes it within the CCS. A QoS mapping mechanism that translates application-level QoS into resource-level QoS is needed for the QoS admission. We also propose a new QoS mapping mechanism using spline functions that enables a continuous QoS translation. We have built a CCS prototype in our laboratory testbed, and have verified that the CCS can resolve the heterogeneities between the server and receiver by the QoS adjustment mechanism of the transcoding and the QoS admission.

  • Novel Channel Allocation Algorithm Using Spectrum Control Technique for Effective Usage of both Satellite Transponder Bandwidth and Satellite Transmission Power

    Katsuya NAKAHIRA  Jun-ichi ABE  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3393-3403

    This paper proposes a new channel allocation algorithm for satellite communication systems. The algorithm is based on a spectrum division transmission technique as well as a spectrum compression transmission technique that we have developed in separate pieces of work. Using these techniques, the algorithm optimizes the spectrum bandwidth and a MODCOD (modulation and FEC error coding rate) scheme to balance the usable amount of satellite transponder bandwidth and satellite transmission power. Moreover, it determines the center frequency and bandwidth of each divided subspectra depending on the unused bandwidth of the satellite transponder bandwidth. As a result, the proposed algorithm enables flexible and effective usage of satellite resources (bandwidth and power) in channel allocations and thus enhances satellite communication (SATCOM) system capacity.

  • FF-Control Point Insertion (FF-CPI) to Overcome the Degradation of Fault Detection under Multi-Cycle Test for POST

    Hanan T. Al-AWADHI  Tomoki AONO  Senling WANG  Yoshinobu HIGAMI  Hiroshi TAKAHASHI  Hiroyuki IWATA  Yoichi MAEDA  Jun MATSUSHIMA  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/08/20
      Vol:
    E103-D No:11
      Page(s):
    2289-2301

    Multi-cycle Test looks promising a way to reduce the test application time of POST (Power-on Self-Test) for achieving a targeted high fault coverage specified by ISO26262 for testing automotive devices. In this paper, we first analyze the mechanism of Stuck-at Fault Detection Degradation problem in multi-cycle test. Based on the result of our analysis we propose a novel solution named FF-Control Point Insertion technique (FF-CPI) to achieve the reduction of scan-in patterns by multi-cycle test. The FF-CPI technique modifies the captured values of scan Flip-Flops (FFs) during capture operation by directly reversing the value of partial FFs or loading random vectors. The FF-CPI technique enhances the number of detectable stuck-at faults under the capture patterns. The experimental results of ISCAS89 and ITC99 benchmarks validated the effectiveness of FF-CPI technique in scan-in pattern reduction for POST.

  • Performance Evaluation of Routing Schemes in B-ISDN

    Hirofumi YOKOI  Shigeo SHIODA  Hiroshi SAITO  Jun MATSUDA  

     
    PAPER

      Vol:
    E78-B No:4
      Page(s):
    514-522

    We investigated performance of routing schemes in B-ISDN, for heterogeneous traffic flows under various bandwidths. In particular, we compared the simulated performance of these schemes by evaluating their blocking probabilities. To achieve high performance, these schemes use special kinds of routing algorithm, one which is pre-selection algorithm and one which is cyclic algorithm. We investigated the efficiency of the pre-selection algorithm and the robustness of the cyclic algorithm for nonuniform traffic and network resources. We found that these routing algorithm schemes can compensate for errors in resource design.

  • Improvement of Auctioneer's Revenue under Incomplete Information in Cognitive Radio Networks

    Jun MA  Yonghong ZHANG  Shengheng LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/11/17
      Vol:
    E99-D No:2
      Page(s):
    533-536

    In this letter, the problem of how to set reserve prices so as to improve the primary user's revenue in the second price-sealed auction under the incomplete information of secondary users' private value functions is investigated. Dirichlet process is used to predict the next highest bid based on historical data of the highest bids. Before the beginning of the next auction round, the primary user can obtain a reserve price by maximizing the additional expected reward. Simulation results show that the proposed scheme can achieve an improvement of the primary user's averaged revenue compared with several counterparts.

  • MARM: An Agent-Based Adaptive QoS Management Framework

    Tatsuya YAMAZAKI  Masakatsu KOSUGA  Nagao OGINO  Jun MATSUDA  

     
    PAPER-Network

      Vol:
    E84-B No:1
      Page(s):
    63-70

    For distributed multimedia applications, the development of adaptive QoS (quality of service) management mechanisms is needed to guarantee various and changeable end-to-end QoS requirements. In this paper, we propose an adaptive QoS management framework based on multi-agent systems. In this framework, QoS management mechanisms are divided into two phases, the flow establishment and renegotiation phase and the media-transfer phase. An adaptation to system resource changes and various user requirements is accomplished by direct or indirect collaborations of the agents in each phase. In the flow establishment and renegotiation phase, application agents determine optimal resource allocation with QoS negotiations to maximize the total users' utility. In the media-transfer phase, stream agents collaborate to adjust each stream QoS reactively. In addition, personal agents help a novice user to specify stream QoS without any a priori knowledge of QoS. To make the interworking of agents tractable, a QoS mapping mechanism is needed to translate the QoS parameters from level to level, since the expression of QoS differs from level to level. As an example of multimedia application based on the proposed framework, a one-way video system is designed. The experimental results of computer simulation show the validity of the proposed framework.

  • Architectural Design of Next-Generation Science Information Network

    Shigeo URUSHIDANI  Shunji ABE  Kensuke FUKUDA  Jun MATSUKATA  Yusheng JI  Michihiro KOIBUCHI  Shigeki YAMADA  

     
    PAPER

      Vol:
    E90-B No:5
      Page(s):
    1061-1070

    This paper proposes an advanced hybrid network architecture and a comprehensive network design of the next-generation science information network, called SINET3. Effectively combining layer-1 switches and IP/MPLS routers, the network provides layer-1 end-to-end circuit services as well as IP and Ethernet services and enables flexible resource allocation in response to service demands. The detailed network design focuses on the tangible achievement of providing a wide range of network services, such as multiple layer services, multiple virtual private network services, advanced qualities of service, and layer-1 bandwidth on demand services. It also covers high-availability capabilities and effective resource assignment in the hybrid network. The cost reduction effect of our network architecture is also shown in this paper.

  • Blind Interference Suppression Scheme by Eigenvector Beamspace CMA Adaptive Array with Subcarrier Transmission Power Assignment for Spectrum Superposing

    Kazuki MARUTA  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:6
      Page(s):
    1050-1057

    This paper proposes a novel blind adaptive array scheme with subcarrier transmission power assignment (STPA) for spectrum superposing in cognitive radio networks. The Eigenvector Beamspace Adaptive Array (EBAA) is known to be one of the blind adaptive array algorithms that can suppress inter-system interference without any channel state information (CSI). However, EBAA has difficulty in suppressing interference signals whose Signal to Interference power Ratio (SIR) values at the receiver are around 0dB. With the proposed scheme, the ST intentionally provides a level difference between subcarriers. At the receiver side, the 1st eigenvector of EBAA is applied to the received signals of the subcarrier assigned higher power and the 2nd eigenvector is applied to those assigned lower power. In order to improve interference suppression performance, we incorporate Beamspace Constant Modulus Algorithm (BSCMA) into EBAA (E-BSCMA). Additionally, STPA is effective in reducing the interference experienced by the primary system. Computer simulation results show that the proposed scheme can suppress interference signals received with SIR values of around 0dB while improving operational SIR for the primary system. It can enhance the co-existing region of 2 systems that share a spectrum.

  • Performance Evaluation of Low Complexity Digital Beamforming Algorithms by Link-Level Simulations and Outdoor Experimental Trials for 5G Low-SHF-Band Massive MIMO

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Kazushi MURAOKA  Kohei IZUI  Kenichiro YAMAZAKI  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1382-1389

    The beamforming (BF) provided by Massive MIMO is a promising technique for the fifth-generation (5G) mobile communication system. In low SHF bands such as 3-6GHz, fully digital Massive MIMO can be a feasible option. Previous works proposed eigenvector zero-forcing (E-ZF) as a digital precoding algorithm to lower the complexity of block diagonalization (BD). On the other hand, another previous work aiming to reduce complexity of BD due to the number of antenna elements proposed digital fixed BF and channel-state-information based precoding (Digital FBCP) with BD whose parameter is the number of beams. Moreover, in order to lower the complexity of the Digital FBCP with BD while retaining the transmission performance, this paper proposes Digital FBCP with E-ZF as a lower complexity digital BF algorithm. The pros and cons of these digital BF algorithms in terms of transmission performance and computational complexity are clarified to select the most appropriate algorithm for the fully digital Massive MIMO. Furthermore, E-ZF can be implemented to 4.5GHz-band fully digital Massive MIMO equipment only when the number of antenna elements is less than or equal to 64, and thus 5G experimental trial employing E-ZF was carried out in Tokyo, Japan where early 5G commercial services will launch. To the best of our knowledge, this was the first outdoor experiment on 4.5GHz-ban Massive MIMO in a dense urban area. An outdoor experiment in a rural area was also carried out. This paper shows both a coverage performance under the single user condition and system throughput performance under a densely deployed four-user condition in the outdoor experimental trials employing the E-ZF algorithm. We reveal that, in the MU-MIMO experiment, the measured system throughput is almost 80% of the maximum system throughput even if users are closely located in the dense urban area thanks to the E-ZF algorithm.

  • Analog Hardware Implementation of a Mathematical Model of an Asynchronous Chaotic Neuron

    Jun MATSUOKA  Yoshifumi SEKINE  Katsutoshi SAEKI  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    389-394

    A number of studies have recently been published concerning chaotic neuron models and asynchronous neural networks having chaotic neuron models. In the case of large-scale neural networks having chaotic neuron models, the neural network should be constructed using analog hardware, rather than by computer simulation via software, due to the high speed and high integration of analog circuits. In the present study, we discuss the circuit structure of a chaotic neuron model, which is constructed on the basis of the mathematical model of an asynchronous chaotic neuron. We show that the pulse-type hardware chaotic neuron model can be constructed on the basis of the mathematical model of an asynchronous chaotic neuron. The proposed model is an effective model for the cell body section of the pulse-type hardware chaotic neuron model for ICs. In addition, we show the bifurcation structure of our composed model, and discuss the bifurcation routes and return maps thereof.

  • 5G Distributed Massive MIMO with Ultra-High Density Antenna Deployment in Low SHF Bands

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1921-1927

    In order to tackle rapidly increasing traffic, dramatic performance enhancements in radio access technologies (RATs) are required for fifth-generation (5G) mobile communication system. In 5G, small/semi-macro cells using Massive MIMO (M-MIMO) with much wider bandwidth in higher frequency bands are overlaid on macro cell with existing frequency band. Moreover, high density deployment of small/semi-macro cell is expected to improve areal capacity. However, in low SHF band (below 6GHz), antenna array size of M-MIMO is large so that it cannot be installed on some environments. Therefore, to improve system throughput on various use cases in 5G, we have proposed distributed Massive MIMO (DM-MIMO). DM-MIMO coordinates lots of distributed transmission points (TPs) that are located in ultra-high density (UHD). Furthermore, DM-MIMO uses various numbers of antenna elements for each TP. In addition, DM-MIMO with UHD-TPs can create user-centric virtual cells corresponding to user mobility, and design of flexible antenna deployment for DM-MIMO is applicable to various use cases. Then, some key parameters such as the number of the distributed TPs, the number of antenna elements for each TP, and proper distance between TPs, should be determined. This paper presents such parameters for 5G DM-MIMO with flexible antenna deployment under fixed total transmission power and constant total number of antenna elements. Computer simulations show that DM-MIMO can achieve more than 1.9 times higher system throughput than an M-MIMO system using 128 antenna elements.

  • Throughput Enhancement for SATCOM Systems Using Dynamic Spectrum Controlled Channel Allocation under Variable Propagation Conditions

    Katsuya NAKAHIRA  Jun MASHINO  Jun-ichi ABE  Daisuke MURAYAMA  Tadao NAKAGAWA  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2016/08/31
      Vol:
    E100-B No:2
      Page(s):
    390-399

    This paper proposes a dynamic spectrum controlled (DSTC) channel allocation algorithm to increase the total throughput of satellite communication (SATCOM) systems. To effectively use satellite resources such as the satellite's maximum transponder bandwidth and maximum transmission power and to handle the propagation gain variation at all earth stations, the DSTC algorithm uses two new transmission techniques: spectrum compression and spectrum division. The algorithm controls various transmission parameters, such as the spectrum compression ratio, number of spectrum divisions, combination of modulation method and FEC coding rate (MODCOD), transmission power, and spectrum bandwidth to ensure a constant transmission bit rate under variable propagation conditions. Simulation results show that the DSTC algorithm achieves up to 1.6 times higher throughput than a simple MODCOD-based algorithm.

  • AutoRobot: A Multi-Agent Software Framework for Autonomous Robots

    Zhe LIU  Xinjun MAO  Shuo YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/04/04
      Vol:
    E101-D No:7
      Page(s):
    1880-1893

    Certain open issues challenge the software engineering of autonomous robot software (ARS). One issue is to provide enabling software technologies to support autonomous and rational behaviours of robots operating in an open environment, and another issue is the development of an effective engineering approach to manage the complexity of ARS to simplify the development, deployment and evolution of ARS. We introduce the software framework AutoRobot to address these issues. This software provides abstraction and a model of accompanying behaviours to formulate the behaviour patterns of autonomous robots and enrich the coherence between task behaviours and observation behaviours, thereby improving the capabilities of obtaining and using the feedback regarding the changes. A dual-loop control model is presented to support flexible interactions among the control activities to support continuous adjustments of the robot's behaviours. A multi-agent software architecture is proposed to encapsulate the fundamental software components. Unlike most existing research, in AutoRobot, the ARS is designed as a multi-agent system in which the software agents interact and cooperate with each other to accomplish the robot's task. AutoRobot provides reusable software packages to support the development of ARS and infrastructure integrated with ROS to support the decentralized deployment and running of ARS. We develop an ARS sample to illustrate how to use the framework and validate its effectiveness.

  • Performance Evaluation of Downlink Multi-User Massive MIMO with Configurable Active Antenna System and Inter Access Point Coordination in Low-SHF-Band Open Access

    Yi JIANG  Kenichiro YAMAZAKI  Toshihiro HAYATA  Kohei IZUI  Kanada NAKAYASU  Toshifumi SATO  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1401-1410

    Massive multiple input and multiple output (Massive MIMO) is a key technique to achieve high system capacity and user data rate for the fifth generation (5G) radio access network (RAN). To implement Massive MIMO in 5G, how much Massive MIMO meets our expectation with various user equipment (UEs) in different environments should be carefully addressed. We focused on using Massive MIMO in the low super-high-frequency (SHF) band, which is expected to be used for 5G commercial bands relatively soon. We previously developed a prototype low-SHF-band centralized-RAN Massive MIMO system that has a flexible active antenna system (AAS)-unit configuration and facilitates advanced radio coordination features, such as coordinated beamforming (CB) coordinated multi-point (CoMP). In this study, we conduct field trials to evaluate downlink (DL) multi-user (MU)-MIMO performance by using our prototype system in outdoor and indoor environments. The results indicate that about 96% of the maximum total DL system throughput can be achieved with 1 AAS unit outdoors and 2 AAS units indoors. We also investigate channel capacity based on the real propagation channel estimation data measured by the prototype system. Compared with without-CB mode, the channel capacity of with-CB mode increases by a maximum of 80% and 104%, respectively, when the location of UEs are randomly selected in the outdoor and indoor environments. Furthermore, the results from the field trial of with-CB mode with eight UEs indicate that the total DL system throughput and user data rate can be significantly improved.

  • Radio Access Technologies for Fifth Generation Mobile Communications System: Review of Recent Research and Developments in Japan Open Access

    Hidekazu MURATA  Eiji OKAMOTO  Manabu MIKAMI  Akihiro OKAZAKI  Satoshi SUYAMA  Takamichi INOUE  Jun MASHINO  Tetsuya YAMAMOTO  Makoto TAROMARU  

     
    INVITED PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:8
      Page(s):
    1638-1647

    As the demand for higher transmission rates and spectral efficiency is steadily increasing, the research and development of novel mobile communication systems has gained momentum. This paper focuses on providing a comprehensive survey of research and development activities on fifth generation mobile communication systems in Japan. We try to survey a vast area of wireless communication systems and the developments that led to future 5G systems.

  • Observation of Break Arc Rotated by Radial Magnetic Field in a 48VDC Resistive Circuit Using Two High-Speed Cameras

    Jun MATSUOKA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E99-C No:9
      Page(s):
    1027-1030

    Break arcs are rotated with the radial magnetic field formed by a magnet embedded in a fixed cathode contact. The break arcs are generated in a 48VDC resistive circuit. The circuit current when the contacts are closed is 10A. The depth of the magnet varies from 1mm to 4mm to change the strength of the radial magnetic field for rotating break arcs. Images of break arcs are taken by two high-speed cameras from two directions and the rotational motion of the break arcs is observed. The rotational period of rotational motion of the break arcs is investigated. The following results are obtained. The break arcs rotate clockwise on the cathode surface seen from anode side. This rotation direction conforms to the direction of the Lorentz force that affects to the break arcs with the radial magnetic field. The rotational period gradually decreases during break operation. When the depth of magnet is larger, the rotational period becomes longer.

  • Experimental Study of Large-Scale Coordinated Multi-User MIMO for 5G Ultra High-Density Distributed Antenna Systems

    Takaharu KOBAYASHI  Masafumi TSUTSUI  Takashi DATEKI  Hiroyuki SEKI  Morihiko MINOWA  Chiyoshi AKIYAMA  Tatsuki OKUYAMA  Jun MASHINO  Satoshi SUYAMA  Yukihiko OKUMURA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1390-1400

    Fifth-generation mobile communication systems (5G) must offer significantly higher system capacity than 4G in order to accommodate the rapidly increasing mobile data traffic. Cell densification has been considered an effective way to increase system capacity. Unfortunately, each user equipment (UE) will be in line-of-sight to many more transmission points (TPs) and the resulting inter-cell interference will degrade system capacity. We propose large-scale coordinated multi-user multiple-input multiple-output (LSC-MU-MIMO), which combines MU-MIMO with joint transmission from all the TPs connected to a centralized baseband unit. We previously investigated the downlink performance of LSC-MU-MIMO by computer simulation and found that it can significantly reduce inter-TP interference and improve the system capacity of high-density small cells. In this paper, we investigate the throughput of LSC-MU-MIMO through an indoor trial where the number of coordinated TPs is up to sixteen by using an experimental system that can execute real-time channel estimation based on TDD reciprocity and real-time data transmission. To clarify the improvement in the system capacity of LSC-MU-MIMO, we compared the throughput measured in the same experimental area with and without coordinated transmission in 4-TP, 8-TP, and 16-TP configurations. The results show that with coordinated transmission the system capacity is almost directly proportional to the number of TPs.

  • Visualization of Tribologically Induced Energy Disturbance to the Stability of High Density Magnetic Recording

    Bo LIU  Yi-Jun MAN  Wei ZHANG  Yan-Sheng MA  

     
    PAPER

      Vol:
    E85-C No:10
      Page(s):
    1795-1799

    As technology moves to 600-1000 Gb/sq-in areal densities and deep sub-10 nm head-disk spacing, it is of crucial importance to prevent both the conventionally defined thermal decay and the tribologically induced decay of recorded magnetic signal. This paper reports a novel method for recording and visualizing the signature of the potential tribological decay. The details of the methodology, its working principles, and typical results obtained are presented in this work. The method is based on the introduction of a type of visualizing disks which use a layer of magneto-optical material with low Curie temperature to replace the magnetic layer used in the conventional magnetic media. The method and corresponding setup were used successfully in the visualization of potential decay caused by slider-particle-disk contact, slider-disk contact during track seeking operations, and slider-disk impact during loading and unloading operations.

  • Slider-Disk Impact and Impact Induced Data Erasure in High Density Magnetic Recording Systems

    Bo LIU  Yi-Jun MAN  Zhi-Min YUAN  Lei ZHU  Ji-Wen WANG  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1539-1545

    Future high density magnetic recording requires a nanometer spaced head-slider interface, high track seeking velocity and high spindle speed. Such a combination greatly increases the likelihood of slider-disk and slider-particle-disk impact. Furthermore, the impact can generate high flash temperature and leads to data reliability problems, such as partial or full data erasure. This work report a method to conduct controlled experimental investigations into the possibility of such a data erasure even when the temperature is far below the Curie temperature. Results indicate that the high density magnetic transitions are of high likelihood of being affected by the flash temperature. Investigations also extended to micromagnetic modeling of the flash temperature effect. Results suggest that thermally induced local stress can play important roll in the data erasure process. Modeling results also exhibit that smaller grain size and higher recording density are also of higher likelihood of getting the transitions being affected by the flash temperature.

  • FOREWORD

    Jun MATSUKATA  

     
    FOREWORD

      Vol:
    E89-D No:12
      Page(s):
    2821-2821
1-20hit(30hit)