1-6hit |
Toshiaki IWAMATSU Takashi IPPOSHI Yasuo YAMAGUCHI Kimio UEDA Koichiro MASHIKO Shigeto MAEGAWA Yasuo INOUE Tadashi HIRAO Tdashi NISHIMURA Akihiko YASUOKA
A high-speed silicon-on-insulator (SOI) of a 1/8 frequency divider and a 64-bit adder were realized using an optimized gate-overlapped LDD and a self-aligned titanium silicide (TiSi2) source-drain structure. The advantages of the delay time and power consumption were analyzed by circuit simulation. The maximum operation frequency of the SOI divider is 2.9 GHz at 3.3 V. The SOI divider operates about 1.6 times faster than the bulk-Si divider. The power consumption of the SOI divider at the maximum operating frequency is about 60% of that of the bulk divider. On the other hand, the speed of the SOI adder is 1.9 nsec at 3.3 V. The SOI adder speed is about 1.3 times faster than the bulk adder. The power consumption of the SOI adder is about 80% of that of the bulk divider. It was found that the high speed, low power features of the SOI divider were due to the pass transistor which had low junction capacitance and little substrate bias effects, in addition to the low wiring capacitance and low fanout capacitance compared to the bulk adder. As a result, it is suggested that SOI circuits using pass transistor have a potential for GHz level systems and it is expected they will be applied to handy communication systems and portable computers used in the multimedia era.
Kenichi HATASAKO Tetsuya NITTA Masami HANE Shigeto MAEGAWA
This paper discusses Mixed Signal LSI technology with embedded power transistors. Trends in Mixed Signal LSI technology are explained at first. Mixed signal LSI technology has proceeded with the help of fine fabrication technology and SOI technology. The BEOL transistor is a new development, which uses InGaZnO (IGZO) as its TFT channel material. The BEOL transistor is one future device which enables 3D IC and chip shrinking technology.
Masaaki IIJIMA Masayuki KITAMURA Masahiro NUMA Akira TADA Takashi IPPOSHI Shigeto MAEGAWA
In this paper, we propose an Active Body-biasing Controlled (ABC)-Bootstrap PTL (Pass-Transistor Logic) on PD-SOI for ultra low power design. Although simply lowering the supply voltage (VDD) causes a lack of driving power, our boosted voltage scheme employing a strong capacitive coupling with ABC-SOI improves a driving power and allows lower voltage operation. We also present an SOI-SRAM design boosting the word line (WL) voltage higher than VDD in short transition time without dual power supply rails. Simulation results have shown improvement in both the delay time and power consumption.
Yasuo YAMAGUCHI Takashi IPPOSHI Kimio UEDA Koichiro MASHIKO Shigeto MAEGAWA Masahide INUISHI Tadashi NISHIMURA
Partially depleted SOI technology with body-tied hybrid trench isolation was developed in order to counteract floating body effects which offers negative impact on the drive current of transistors and the stability of circuit operation while maintaining SOI's specific merits such as high speed operation and low power consumption. The feasibility of this technology and its superior soft error effects were demonstrated by a fully functional 4M-bit SRAM. Its radio frequency characteristics were also evaluated and it was verified that high-performance transistors and passive elements can be realized by the combination of the SOI structure and a high-resistivity substrate. Moreover, its application to a 2.5 GHz digital IC for optical communication was also demonstrated. Thus it was proven that the body-tied SOI devices with the hybrid trench isolation is suitable to realize intelligent and reliable high-speed system-on-a chip integrating various IP's.
Kimio UEDA Koji NII Yoshiki WADA Shigenobu MAEDA Toshiaki IWAMATSU Yasuo YAMAGUCHI Takashi IPPOSHI Shigeto MAEGAWA Koichiro MASHIKO Yasutaka HORIBA
This paper describes a 0.35µm SOI-CMOS gate array using partially-depleted transistors. The gate array adopts the field-shield isolation technique with body-tied structures to suppress floating-body problems such as: (1) kink characteristics in drain currents, (2) low break-down voltage, and (3) frequency-dependent delay time. By optimizing the basic-cell layout and power-line wiring, the SOI-CMOS gate array also allows the use of the cell libraries and the design methodologies compatible with bulk-CMOS gate arrays. An ATM (Asynchronous Transfer Mode) physical-layer processing LSI was fabricated using a 0.35µm SOI-CMOS gate array with 560k raw gates. The LSI operated at 156 Mbps at 2.0 V, while consuming 71% less power than using a typical 0.35µm 3.3 V bulk-CMOS gate array.
Fukashi MORISHITA Hideyuki NODA Isamu HAYASHI Takayuki GYOHTEN Mako OKAMOTO Takashi IPPOSHI Shigeto MAEGAWA Katsumi DOSAKA Kazutami ARIMOTO
We propose a novel capacitorless twin-transistor random access memory (TTRAM). The 2 Mb test device has been fabricated on 130 nm SOI-CMOS process. We demonstrate the TTRAM cell has two data-storage states and confirm the data retention time of 100 ms at 80. TTRAM process is compatible with the conventional SOI-CMOS and never requires any additional processes. A 6.1 ns row-access time is achieved and 250 MHz operation can be realized by using 2 bank 8 b-burst mode.