1-12hit |
Tomoaki KATO Jun-ichi SASAKI Tsuyoshi SHIMODA Hiroshi HATAKEYAMA Takemasa TAMANUKI Shotaro KITAMURA Masayuki YAMAGUCHI Tatsuya SASAKI Keiro KOMATSU Mitsuhiro KITAMURA Masataka ITOH
The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.
Zheng TANG Takayuki YAMAGUCHI Koichi TASHIMA Okihiko ISHIZUKA Koichi TANNO
This paper describes a new model of multiple-valued immune network based on biological immune response network. The model of multiple-valued immune network is formulated based on the analogy with the interaction between B cells and T cells in immune system. The model has a property that resembles immune response quite well. The immunity of the network is simulated and makes several experimentally testable predictions. Simulation results are given to a letter recognition application of the network and compared with binary ones. The simulations show that, beside the advantages of less categories, improved memory pattern and good memory capacity, the multiple-valued immune network produces a stronger noise immunity than binary one.
Takemasa TAMANUKI Shotaro KITAMURA Hiroshi HATAKEYAMA Tatsuya SASAKI Masayuki YAMAGUCHI
Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.
Masayuki YAMAGUCHI Koji KUDO Hiroyuki YAMAZAKI Masashige ISHIZAKA Tatsuya SASAKI
Different-wavelength distributed feedback laser diodes with integrated modulators (DFB/MODs) are fabricated on a single wafer operate at wavelengths from 1. 52 µm to 1. 59 µm, a range comparable to the expanded Er-doped fiber amplifier gain band. A newly developed field-size-variation electron-beam lithography enables grating pitch to be controlled to within 0. 0012 nm, and narrow-stripe selective metal-organic vapor-phase epitaxy is used to control the bandgap wavelength of laser active layers and modulator absorption layers for each channel. The channel spacing of fabricated 40-channel DFB/MODs is 214 GHz in average with a standard deviation of 0. 39 nm. Very uniform lasing and modulating performances are achieved, such as threshold currents about 10 mA and extinction ratios about 20 dB at -2 V in average. These devices have been used to demonstrate 2. 5-Gb/s transmission over 600 km of a normal fiber with a power penalty of less than 1 dB.
Tomoaki KATO Jun-ichi SASAKI Tsuyoshi SHIMODA Hiroshi HATAKEYAMA Takemasa TAMANUKI Shotaro KITAMURA Masayuki YAMAGUCHI Tatsuya SASAKI Keiro KOMATSU Mitsuhiro KITAMURA Masataka ITOH
The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.
Masayuki YAMAGUCHI Nagisa ISHIURA Takashi KAMBE
This paper presents a new binding algorithm for a retargetable compiler which can deal with diverse architectures of application specific embedded processors. The architectural diversity includes a "non-orthogonal" datapath configuration where all the registers are not equally accessible by all the functional units. Under this assumption, binding becomes a hard task because inadvertent assignment of an operation to a functional unit may rule out possible assignment of other operations due to unreachability among datapath resources. We propose a new BDD-based algorithm to solve this problem. While most of the conventional methods are based on the covering of expression trees obtained by decomposing DFGs, our algorithm works directly on the DFGs so as to avoid infeasible bindings. In the experiments, a feasible binding which satisfies the reachability is found or the deficiency of datapath is detected within a few seconds.
Masayuki YAMAGUCHI Akihisa YAMADA Toshihiro NAKAOKA Takashi KAMBE Nagisa ISHIURA
This paper presents a novel way of evaluating architecture of embedded custom DSPs which helps designers optimizing the datapath configuration and the instruction set. Given a datapath structure, it evaluates the performance in terms of the estimated number of steps to execute the target program on the datapath. A concept of "parallel constraint" is newly introduced, which enables evaluation of the impact of instruction format design on the performance without explicity specifying the instruction format. The number of execution steps is estimated by a combination of static analysis and dynamic analysis. It enables fast and precise estimation of actual performance in the early design stage. We have developed an architecture evaluation system based on the presented method and applied it to some actual design of signal processors. We demonstrate the accuracy of estimation and the usefulness of the method through its applications.
Tomoyuki YAMAGUCHI Shuji HASHIMOTO
This paper proposes a novel image processing method based on a percolation model. The percolation model is used to represent the natural phenomenon of the permeation of liquid. The percolation takes into account the connectivity among the neighborhoods. In the proposed method, a cluster formation by the percolation process is performed first. Then, feature extraction from the cluster is carried out. Therefore, this method is a type of scalable window processing for realizing a robust and flexible feature extraction. The effectiveness of proposed method was verified by experiments on crack detection, noise reduction, and edge detection.
Tatsuya SASAKI Masayuki YAMAGUCHI Keiro KOMATSU Ikuo MITO
Photonic integrated circuits (PICs) are required for future optical communication systems, because various optical components need to be compactly integrated in one-chip configurations with a small number of optical alignment points. Bandgap energy controlled selective metal organic vapor phase epitaxy (MOVPE) is a breakthrough technique for the fabrication of PICs because this technique enables the simultaneous formation of waveguides for various optical components in one-step growth. Directly formed waveguides on a mask-patterned substrate can be obtained without using conventional mesa-etching of the semiconductor layers. The waveguide width is precisely controlled by the mask pattern. Therefore, high device uniformity and yield are expected. Since we proposed and demonstrated this technique in 1991, various PICs have been reported. Using electroabsorption modulator integrated distributed feedback laser diodes, 2.5 Gb/s-550 km transmission experiments have been successfully conducted. Another advantage of the selective MOVPE technique is the capability to form narrow waveguide layers. We have demonstrated a polarization-insensitive semiconductor optical amplifier that consists of a selectively formed narrow (less than 1 µm wide) bulk active layer. For a four-channel array, a chip gain of more than 20 dB and a gain difference between TE and TM inputs of less than 1 dB were obtained. We have also reported an optical switch matrix and an optical transceiver PIC for access optical networks. By using a low-loss optical waveguide, a 0 dB fiber-to-fiber gain for the 14 switch matrix and 0 dBm fiber output power from the 1.3 µm transceiver PIC were obtained. In this paper, the selective MOVPE technique and its applications to various kinds of PICs are discussed.
Yuki YAMAGUCHI Kohei SHIMIZU Atsushi MATSUZAKI Daisuke SANO Tomoya SATO Yuya TANAKA Hisao ISHII
The gap states of tetratetracontane (C44H90; TTC), which is a model oligomer of polyethylene, was examined by using high-sensitivity UV photoemission spectroscopy (HS-UPS). The high sensitivity enabled us to directly observe the weak gap states distributed in the HOMO-LUMO gap from the valence band top to 3.0 eV below the vacuum level. On the basis of the density-of-states derived from UPS results, the tribocharging nature of polyethylene was discussed in comparison with our previous result for nylon-6,6 film.
Takemasa TAMANUKI Shotaro KITAMURA Hiroshi HATAKEYAMA Tatsuya SASAKI Masayuki YAMAGUCHI
Spot-size-converter integrated semiconductor optical amplifiers have been developed as gate elements for optical switch matrices. An S-shape waveguide has been introduced to prevent re-coupling of unguided light to the output fiber. An angled-facet structure effectively suppressed light reflection at the end facets. Consequently, a high extinction ratio of 70 dB and a high fiber-to-fiber gain of 20 dB were achieved. Sufficient optical coupling characteristics to a flat-ended single-mode fiber with a coupling loss of 3.5 dB were also demonstrated.
Hiroyuki YAMAGUCHI Akihiro KAJIWARA Shogo HAYASHI
In this paper, millimeter-wave radar cross section (RCS) characteristics for rough surface is investigated by means of an approximation method of the magnetic field integral equation and the feasibility of road condition sensing is discussed. The RCS measurement at 94 GHz is carried out in order to verify the numerical result, thereby the numerical results are in good agreement with the measured RCS. The dependence of RCS on the radar incidence angle and surface roughness is investigated where the cross-polarized RCS characteristic is also considered.