The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mixed(19hit)

1-19hit
  • Quantum Frequency Arrangements, Quantum Mixed Orthogonal Arrays and Entangled States Open Access

    Shanqi PANG  Ruining ZHANG  Xiao ZHANG  

     
    LETTER-Mathematical Systems Science

      Pubricized:
    2020/06/08
      Vol:
    E103-A No:12
      Page(s):
    1674-1678

    In this work, we introduce notions of quantum frequency arrangements consisting of quantum frequency squares, cubes, hypercubes and a notion of orthogonality between them. We also propose a notion of quantum mixed orthogonal array (QMOA). By using irredundant mixed orthogonal array proposed by Goyeneche et al. we can obtain k-uniform states of heterogeneous systems from quantum frequency arrangements and QMOAs. Furthermore, some examples are presented to illustrate our method.

  • Topological Stack-Queue Mixed Layouts of Graphs

    Miki MIYAUCHI  

     
    PAPER-Graphs and Networks

      Vol:
    E103-A No:2
      Page(s):
    510-522

    One goal in stack-queue mixed layouts of a graph subdivision is to obtain a layout with minimum number of subdivision vertices per edge when the number of stacks and queues are given. Dujmović and Wood showed that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with 4⌈log(s+q)q sn(G)⌉ (resp. 2+4⌈log(s+q)q qn(G)⌉) division vertices per edge, where sn(G) (resp. qn(G)) is the stack number (resp. queue number) of G. This paper improves these results by showing that for every integer s, q>0, every graph G has an s-stack q-queue subdivision layout with at most 2⌈logs+q-1sn(G)⌉ (resp. at most 2⌈logs+q-1qn(G)⌉ +4) division vertices per edge. That is, this paper improves previous results more, for graphs with larger stack number sn(G) or queue number qn(G) than given integers s and q. Also, the larger the given integer s is, the more this paper improves previous results.

  • Analysis Method of Ground Wave Propagation over Land-to-Sea Mixed-Path by Using Helmholtz-Kirchhoff Integral Theorem

    Toru KAWANO  Keiji GOTO  Toyohiko ISHIHARA  

     
    PAPER-Radiation and Propagation

      Vol:
    E94-C No:1
      Page(s):
    10-17

    In this paper, we have derived a novel integral representation for the ground wave propagation over land-to-sea mixed-paths by applying the Helmholtz-Kirchhoff integral theorem. By using the method of stationary phase applicable uniformly as the stationary phase point approaches the endpoint of the integral, we have derived the asymptotic solution for the scattered fields consisting of the first-order and the second-order diffraction terms. We show that the asymptotic solution thus derived agrees with the asymptotic solution derived by applying the aperture field method (AFM) and the method of stationary phase. We have confirmed the validity and the utility of the novel integral representation and its asymptotic solution by comparing with the widely used mixed-path theorem and the experimental measurement performed in Kanto area and Tokyo bay.

  • Improvements of the One-to-Many Eigenvoice Conversion System

    Yamato OHTANI  Tomoki TODA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Voice Conversion

      Vol:
    E93-D No:9
      Page(s):
    2491-2499

    We have developed a one-to-many eigenvoice conversion (EVC) system that allows us to convert a single source speaker's voice into an arbitrary target speaker's voice using an eigenvoice Gaussian mixture model (EV-GMM). This system is capable of effectively building a conversion model for an arbitrary target speaker by adapting the EV-GMM using only a small amount of speech data uttered by the target speaker in a text-independent manner. However, the conversion performance is still insufficient for the following reasons: 1) the excitation signal is not precisely modeled; 2) the oversmoothing of the converted spectrum causes muffled sounds in converted speech; and 3) the conversion model is affected by redundant acoustic variations among a lot of pre-stored target speakers used for building the EV-GMM. In order to address these problems, we apply the following promising techniques to one-to-many EVC: 1) mixed excitation; 2) a conversion algorithm considering global variance; and 3) adaptive training of the EV-GMM. The experimental results demonstrate that the conversion performance of one-to-many EVC is significantly improved by integrating all of these techniques into the one-to-many EVC system.

  • Analysis of Ground Wave Propagation over Land-to-Sea Mixed-Path by Using Equivalent Current Source on Aperture Plane

    Toru KAWANO  Keiji GOTO  Toyohiko ISHIHARA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    46-54

    In this paper, we have obtained the integral representation for the ground wave propagation over land-to-sea mixed-paths which uses the equivalent current source on an aperture plane. By extending the integral to the complex plane and deforming the integration path into the steepest descent path, we have derived a simple integral representation for the mixed-path ground wave propagation. We have also derived the hybrid numerical and asymptotic representation for an efficient calculation of the ground wave and for easy understanding of the diffraction phenomena. By using the method of the stationary phase applicable uniformly as the stationary phase point approaches the endpoint, we have derived the high-frequency asymptotic solution for the ground wave propagation over the mixed-path. We have confirmed the validity of the various representations by comparing both with the conventional mixed-path theory and with the experimental results performed in Kanto areas including the sea near Tokyo bay. By examining the asymptotic solution in detail, we have found out the cause or the mechanism of the recovery effect occurring on the portion of the sea over the land-to-sea mixed-path.

  • Throughput Enhancement Using Adaptive Delay Barrier Function over HSDPA System in Mixed Traffic Scenarios

    Yong-Seok KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    488-493

    In this paper, we consider a method to enhance the throughput of HSDPA systems in the mixed traffic scenario. A channel-dependent adaptive delay barrier (DB) function is proposed to maximize throughput of best-effort (BE) traffic while satisfying the delay latency of voice over internet protocol (VoIP) service. Simulations show that the proposed channel-adaptive DB function raises the throughput of BE traffic service by 30% compared to the conventional scheme, without degrading the capacity of VoIP service over HSDPA system.

  • Method for Visualizing Complicated Structures Based on Unified Simplification Strategy

    Hiroki OMOTE  Kozo SUGIYAMA  

     
    PAPER

      Vol:
    E90-D No:10
      Page(s):
    1649-1656

    In this paper, we present a novel force-directed method for automatically drawing intersecting compound mixed graphs (ICMGs) that can express complicated relations among elements such as adjacency, inclusion, and intersection. For this purpose, we take a strategy called unified simplification that can transform layout problem for an ICMG into that for an undirected graph. This method is useful for various information visualizations. We describe definitions, aesthetics, force model, algorithm, evaluation, and applications.

  • Experimental Study on Fully Integrated Active Guard Band Filters for Suppressing Substrate Noise in Sub-Micron CMOS Processes for System-on-a-Chip

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    89-96

    This paper describes fully integrated active guard band filters for suppressing the substrate coupling noise and their noise suppression effect measured by test chip experiments. The noise cancellation circuit of the active guard band filters simply consists of an inverter and a source follower. The substrate noise suppression effect was measured by using a test chip fabricated in a 0.18 µm CMOS triple-well process for system-on-a-chip. The noise with the filter was less than 5% of that without the filter and the noise suppression effect was observed from 1 MHz to 200 MHz by the statistical measurement of the voltage comparator. The noise suppression effect was also observed for actual digital switching noise produced by digital inverters. Configuration of the active guard band filter was investigated by simulation and it is shown that high and uniform noise suppression effect is achieved by placing the guard bands in the L-shape around the target triple-well area on the p-substrate.

  • Analysis and Testing of Analog and Mixed-Signal Circuits by an Operation-Region Model

    Yukiya MIURA  

     
    PAPER-Analog/Mixed Signal Test

      Vol:
    E85-D No:10
      Page(s):
    1551-1557

    This paper proposes an operation-region model for analyzing and testing analog and mixed-signal circuits, which is based on observation of change in MOSFET operation regions. First, the relation between the change in MOSFET operation regions and the fault behavior of a mixed-signal circuit containing a bridging fault is investigated. Next, we propose an analysis procedure based on the operation-region model and apply it to generate the optimal input combination for testing the circuit. We also determine which transistors should be observed in order to estimate the circuit behavior. Since the operation-region model is a method for modeling circuit behavior abstractly, the proposed method will be useful for modeling circuit behavior and for analyzing and testing many kinds of analog and mixed-signal circuits.

  • Reliability Optimization Design Using a Hybridized Genetic Algorithm with a Neural-Network Technique

    ChangYoon LEE  Mitsuo GEN  Way KUO  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E84-A No:2
      Page(s):
    627-637

    In this paper, we examine an optimal reliability assignment/redundant allocation problem formulated as a nonlinear mixed integer programming (nMIP) model which should simultaneously determine continuous and discrete decision variables. This problem is more difficult than the redundant allocation problem represented by a nonlinear integer problem (nIP). Recently, several researchers have obtained acceptable and satisfactory results by using genetic algorithms (GAs) to solve optimal reliability assignment/redundant allocation problems. For large-scale problems, however, the GA has to enumerate a vast number of feasible solutions due to the broad continuous search space. To overcome this difficulty, we propose a hybridized GA combined with a neural-network technique (NN-hGA) which is suitable for approximating optimal continuous solutions. Combining a GA with the NN technique makes it easier for the GA to solve an optimal reliability assignment/redundant allocation problem by bounding the broad continuous search space by the NN technique. In addition, the NN-hGA leads to optimal robustness and steadiness and does not affect the various initial conditions of the problems. Numerical experiments and comparisons with previous results demonstrate the efficiency of our proposed method.

  • An Appropriate Spatial Frequency Selection Method for Moving Object Velocity Estimation in the Mixed Domain

    Shengli WU  Nozomu HAMADA  

     
    PAPER-Image

      Vol:
    E83-A No:11
      Page(s):
    2348-2356

    To estimate moving object velocity in an image sequence is useful for a variety of applications, such as velocity measurement, computer vision and monitoring systems. An effective way is to approach it in the transform/spatiotemporal mixed domain (MixeD), which transforms the 3-D signal processing problem into 1-D complex signal processing. But it remains a problem how to select several spatial frequency points in the MixeD which may influence the accuracy of velocity estimation and object detection. In this paper, a spatial frequency selection method has been proposed, which can choose the appropriate spatial frequency points out of a number of points in MixeD automatically. So the velocity estimation problem can be addressed by solving the coupled equations established over two selected appropriate points in 2-D spatial frequency domain other than searching for the spectral energy plane over a number of points selected by experience. In this method, evaluation functions corresponding to image sequence with one moving object and two moving objects are established firstly, and the selection is then achieved by using the established evaluation functions together with a threshold. The simulation results show that the proposed method is effective on the appropriate spatial frequency selection.

  • Fault Behavior and Change in Internal Condition of Mixed-Signal Circuits

    Yukiya MIURA  

     
    LETTER-Fault Tolerance

      Vol:
    E83-D No:4
      Page(s):
    943-945

    The relationship between the change in transistor operation regions and the fault behavior of a mixed-signal circuit having a bridging fault was investigated. We also discussed determination of transistors to be observed for estimating the fault behavior. These results will be useful for modeling faulty behaviors and analyzing and diagnosing faults in mixed-signal circuits.

  • Weatherability of 60 GHz Wave Absorber Using Epoxy-Modified Urethane Rubber Mixed with Carbon Particles

    Tetsu SOH  Kouji WADA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E83-C No:3
      Page(s):
    496-501

    An epoxy-modified urethane rubber mixed with carbon particles is now chosen as the millimeter-wave absorber material in our study. The absorption characteristics of the absorber is measured under temperature changes. The weatherability of our absorber is also clarified based on absorption characteristics, thickness and hardness of the sample. As a result of the temperature characteristics of the absorber, the difference of the maximum absorption frequency under temperature changes is about 1 GHz, however the absorption of 20 dB or more is obtained between 54 and 58 GHz. The result of accelerated artificial exposure test is that 2.8% of the thickness of our sample is shrunk after 1000 hour exposure, and the hardness of rubber is hardened with increasing test time. It is also confirmed that the deterioration of the absorption ranges from 1 to 3 dB, although the absorption of about 20 dB is kept at the frequency range. As a consequence, it is confirmed that the wave absorber using the epoxy-modified urethane rubber mixed with carbon particles has good weatherability including our desired temperature characteristics, and it is suitable for outdoor use.

  • Substrate Noise Simulation Techniques for Analog-Digital Mixed LSI Design

    Makoto NAGATA  Atsushi IWATA  

     
    INVITED PAPER

      Vol:
    E82-A No:2
      Page(s):
    271-278

    Crosstalk from digital to analog circuits can be causative of operation fails in analog-digital mixed LSIs. This paper describes modeling techniques and simulation strategies of the substrate coupling noise. A macroscopic substrate noise model that expresses the noise as a function of logic state transition frequencies among digital blocks is proposed. A simulation system based on the model is implemented in the mixed signal simulation environment, where performance degradation of the 2nd order ΔΣADC coupled to digital noise sources is clearly simulated. These results indicate that the proposed behavioral modeling approach allows practicable full chip substrate noise simulation measures.

  • Analysis and Synthesis of a Class of Microwave Filters from 2-Variable Point of View

    Hideaki FUJIMOTO  

     
    PAPER-Microwave and Millimeter Wave Technology

      Vol:
    E81-C No:6
      Page(s):
    975-984

    The following, which is related to the design of the microwave filters, is mainly presented: (1) certain useful approximation which can be obtained by double-resistive- terminated 2-ports consisting of a cascade of two 1-variable 2-ports in different variables, and (2) an approach for filter design from 2-variable viewpoint. Approximations presented provide useful magnitude responses in 2-D domain. Hence it is discussed that how the provided 2-D responses can be used for the design of the microwave filters. Furthermore, properties of the 2-variable transfer functions resulting in such circuits are given.

  • Substrate Noise Reduction Using Active Guard Band Filters in Mixed-Signal Integrated Circuits

    Keiko Makie-FUKUDA  Satoshi MAEDA  Toshiro TSUKADA  Tatsuji MATSUURA  

     
    PAPER

      Vol:
    E80-A No:2
      Page(s):
    313-320

    A method called "active guard band filtering" is proposed for reducing substrate noise in analog and digital mixed-signal integrated circuits. A noise cancellation signal having an inverse value to the substrate noise is actively input into a guard band to suppress the substrate noise. An operational amplifier produces the noise cancellation signal based upon the substrate noise detected by one guard band and feeds this signal through another quard band into the substrate. This is done within the amplifier feedback loop, which includes the guard bands and the substrate. The noise suppression effect was measured by using 0.8µm CMOS test chip. Using active guard band filtering suppressed substrate noise to -40 dB of the original non-canceled noise level at 8 MHz. The noise suppression effect was also observed at frequencies up to 20MHz, with an external operational amplifier. The influence of parasitic impedance was found to be a key factor in noise suppression. An active guard band filter with an on-chip noise cancellation circuit will be even more effective for high frequencies, because it eliminates parasitic impedance due to external components.

  • Approaches to Reducing Digital-Noise Coupling in CMOS Mixed-Signal LSIs

    Toshiro TSUKADA  Keiko Makie-FUKUDA  

     
    INVITED PAPER

      Vol:
    E80-A No:2
      Page(s):
    263-275

    Digital-switching noise coupled into sensitive analog circuits is a critical problem in large-scale integration of mixed analog and digital circuits. This paper describes noise coupling of this kind, especially, through the substrate in CMOS integrated circuits, and reviews recent technical solutions to this noise problem. Simplified models have been developed to simulate the substrate coupling rapidly and accurately. A method using a CMOS comparator was proposed for measuring the effects of substrate noise, and equivalent waveforms of actual substrate noise were obtained. A circuit tecnique, called active guard band filtering, that controls the noise source is a new approach to substrate noise decoupling. CAD methods for handling substrate-coupled switching noise are making design verification possible for practical mixed-signal LSIs.

  • Deposition of Ba Ferrite Films for Perpendicular Magnetic Recording Media Using Mixed Sputtering Gas of Xe, Ar and O2

    Nobuhiro MATSUSHITA  Kenji NOMA  Shigeki NAKAGAWA  Masahiko NAOE  

     
    PAPER

      Vol:
    E78-C No:11
      Page(s):
    1562-1566

    Ba ferrite films were deposited epitaxially on ZnO underlayer from targets with composition of BaO-6.5Fe2O3 at substrate temperature of 600 using the facing targets sputtering apparatus. The gas mixture of Ar and Xe of 0.18 Pa and O2 of 0.02 Pa was used as the sputtering gas and the dependences of crystallographic and magnetic characteristics on the partial Xe pressure PXe(0.0-0.18 Pa) were investigated. Films deposited at various PXe were composed of BaM ferrite and spinel crystallites, and the minimum centerline average roughness Ra of 8.3 nm was obtained at PXe of 0.10 Pa. Since saturation 4πMs of 5.1 kG and perpendicular anisotropy constant Ku1 of 4.23105 Jm-3 were larger than those of bulk BaM ferrite of 4.8 kG and 3.30105 Jm-3, respectively, these films appeared promising for use as perpendicular recording media.

  • A Method of Current Testing for CMOS Digital and Mixed-Signal LSIs

    Yukiya MIURA  Sachio NAITO  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    845-852

    Current testing has been proposed as an alternative technique for testing fully CMOS digital LSIs. Current testing has higher fault coverage than conventional stuck-at fault (SAF) testing and is more economical because it detects a wide range of faults and requires fewer test vectors than does SAF testing. We have proposed a current testing that measures the integral of the power supply current (IDD) during one clock period including the switching current. Since this method cannot be affected by the switching current, it can be used to test an LSI operating at a relatively high clock freuqnecy. This paper presents an improved current testing method for CMOS digital and analog LSIs. The method uses two current values (i.e., an upper limit and a lower limit) and judges the circuit under test to be faulty if the measured IDD is outside these limits. The proposed current testing is evaluated here for some kinds of faults (e.g., the bridging fault and the breaking fault) in digital and mixed-signal LSIs, and its efficiency of the current testing using SPICE3.