The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

9061-9080hit(42807hit)

  • FOREWORD Open Access

    Tetsuo HIRONAKA  

     
    FOREWORD

      Vol:
    E98-D No:2
      Page(s):
    219-219
  • Fabrication of Nanosized Structures on Nafion Membranes by Thermal Nanoimprinting

    Nobuya HIROSHIBA  Wataru YANO  Ryuji OKUMURA  Yo ICHIKAWA  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    133-135

    We demonstrated a novel technique to fabricate nanosized structures on a Nafion membrane, using thermal nanoimprinting with alinebreak $5 imes 5$,$mu $m$^{mathrm{2}}$ square pattern Si mold without any polymer damage. A 24,MPa thermal imprinting pressure was used for 10,min. We observed high aspect ratio ($sim$1:10) pillars on the surface after imprinting at 200$^{circ}$C. Finally, we used a novel quartz mold with a 200,nm resolution dot pattern.

  • Network-Level FPGA Acceleration of Low Latency Market Data Feed Arbitration

    Stewart DENHOLM  Hiroaki INOUE  Takashi TAKENAKA  Tobias BECKER  Wayne LUK  

     
    PAPER-Application

      Pubricized:
    2014/11/19
      Vol:
    E98-D No:2
      Page(s):
    288-297

    Financial exchanges provide market data feeds to update their members about changes in the market. Feed messages are often used in time-critical automated trading applications, and two identical feeds (A and B feeds) are provided in order to reduce message loss. A key challenge is to support A/B line arbitration efficiently to compensate for missing packets, while offering flexibility for various operational modes such as prioritising for low latency or for high data reliability. This paper presents a reconfigurable acceleration approach for A/B arbitration operating at the network level, capable of supporting any messaging protocol. Two modes of operation are provided simultaneously: one prioritising low latency, and one prioritising high reliability with three dynamically configurable windowing methods. We also present a model for message feed processing latencies that is useful for evaluating scalability in future applications. We outline a new low latency, high throughput architecture and demonstrate a cycle-accurate testing framework to measure the actual latency of packets within the FPGA. We implement and compare the performance of the NASDAQ TotalView-ITCH, OPRA and ARCA market data feed protocols using a Xilinx Virtex-6 FPGA. For high reliability messages we achieve latencies of 42ns for TotalView-ITCH and 36.75ns for OPRA and ARCA. 6ns and 5.25ns are obtained for low latency messages. The most resource intensive protocol, TotalView-ITCH, is also implemented in a Xilinx Virtex-5 FPGA within a network interface card; it is used to validate our approach with real market data. We offer latencies 10 times lower than an FPGA-based commercial design and 4.1 times lower than the hardware-accelerated IBM PowerEN processor, with throughputs more than double the required 10Gbps line rate.

  • High Efficiency Bidirectional DC-DC Converter Topologies for Energy Storage Systems Using High Energy Density Batteries

    Akihiko KANOUDA  Takayuki OUCHI  Takae SHIMADA  

     
    INVITED PAPER

      Vol:
    E98-A No:2
      Page(s):
    460-465

    The bidirectional DC-DC converters that are used in backup power supplies, energy storage systems, and electric vehicles, are described in this paper, because they have recently attracted a lot of attention. First, this paper shows the main use of the bidirectional DC-DC converter, the optimum circuit topology in accordance with its use, and the characteristic properties of the circuits. In addition, the expected characteristics for the next generations of power semiconductor devices for each bidirectional converter circuit are shown.

  • An All-Digital Reconfigurable Time-Domain ADC for Low-Voltage Sensor Interface in 65nm CMOS Technology

    Yu HOU  Takamoto WATANABE  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    466-475

    An all-digital time-domain ADC, abbreviated as TAD, is presented in this paper. All-digital structure is intrinsically compatible with the scaling of CMOS technology, and can satisfy the great demand of miniaturized and low-voltage sensor interface. The proposed TAD uses an inverter-based Ring-Delay-Line (RDL) to transform the input signal from voltage domain to time domain. The voltage-modulated time information is then digitized by a composite architecture namely “4-Clock-Edge-Shift Construction” (4CKES). TAD features superior voltage sensitivity and 1st-order noise shaping, which can significantly simplify the power-hungry pre-conditioning circuits. Reconfigurable resolution can be easily achieved by applying different sampling rates. A TAD prototype is fabricated in 65nm CMOS, and consumes a small area of 0.016mm2. It achieves a voltage resolution of 82.7µV/LSB at 10MS/s and 1.96µV/LSB at 200kS/s in a narrow input range of 0.1Vpp, merely under 0.6V supply. The highest SNR of TAD prototype is 61.36dB in 20kHz bandwidth at 10MS/s. This paper also analyzes the nonideal effects of TAD and discusses the potential solutions. As the principal drawback, nonlinearity of TAD can be compensated by the differential-setup and digital calibration.

  • Circular Polarized Optical OFDM for Optical Wireless Communication

    Kazuo HAGIHARA  Kouji OHUCHI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    520-527

    As one of optical wireless Orthogonal Frequency Division Multiplexing (OFDM) systems, there is Flip-OFDM, which separates an OFDM signal into positive and negative parts and transmits them. It has good power efficiency and low hardware complexity. However, the system halves transmission efficiency compared with Direct Current-biased Optical OFDM. In this paper, Circular Polarized Optical OFDM (CPO-OFDM) is presented. This system separates OFDM signals into positive and negative parts, and it converts these signals into left-handed and right-handed polarization, and it multiplexes these signals. CPO-OFDM is analyzed with an intensity modulation/direct detection channel model which considers the change of the state of polarization owing to free space propagation. As a result of the analysis, it is shown that CPO-OFDM is a flexible system like the conventional systems by using circular polarization and it has the equivalent bit error rate (BER) and the double transmission efficiency compared with Flip-OFDM. The IM/DD channel model which considers the degree of polarization (DOP) is also shown. As for the DOP, it improves by the increase of the propagation distance. Thus, we can achieve the equivalent BER obtained with a high DOP laser even if we use a low DOP laser.

  • Sub-Picosecond Resolution and High-Precision TDC for ADPLLs Using Charge Pump and SAR-ADC

    Zule XU  Seungjong LEE  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    476-484

    We present a time-to-digital converter (TDC) achieving sub-picosecond resolution and high precision for all-digital phase-locked-loops (ADPLLs). The basic idea is using a charge pump to translate time interval into charge, and a successive-approximation-register-analog-to-digital converter (SAR-ADC) to quantize the charge. With this less complex configuration, high resolution, high precision, low power, and small area can be achieved all together. We analyzed the noise contribution from the charge pump and describe detailed design and implementation for sizing the capacitor and transistors, with the awareness of noise and linearity. The analysis demonstrates the proposed TDC capable of sub-picosecond resolution and high precision. Two prototype chips were fabricated in 65nm CMOS with 0.06mm2, and 0.018mm2 core areas, respectively. The achieved resolutions are 0.84ps and 0.80ps, in 8-bit and 10-bit range, respectively. The measured single-shot-precisions range from 0.22 to 0.6ps, and from 0.66 to 1.04ps, respectively, showing consistent trends with the analysis. Compared with state-of-the-arts, best performance balance has been achieved.

  • Extension of Parallel Combinatory Multicode Transmission with Constant-Amplitude Signaling and Its Theoretical Analysis

    Tatsuya OHTA  Kouji OHUCHI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    528-536

    A multicode transmission (MC) system can transmit multiple data streams at one time. However, the amplitude of the transmission signal has sharp fluctuations. To avoid this problem, constant amplitude (CA) signaling schemes were studied, and some MC systems were developed such as the MC system with CA signaling (MC-CA) and the parallel combinatory MC system with CA signaling (PCMC-CA). In this paper, extension systems of PCMC-CA system are developed. In particular, two demodulation methods are discussed for the extension systems. Then, the bit error rate (BER) and data transmission rate are theoretically analyzed. The results shows that the extension systems has a better performance than the MC-CA system in both of the BER and data transmission rate.

  • Hybrid Station Aided Coexistence Scheme between Wireless PANs and Wireless LAN

    Fumihiro INOUE  Takayuki NISHIO  Masahiro MORIKURA  Koji YAMAMOTO  Fusao NUNO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    578-588

    The problem of coexistence between IEEE 802.11g based wireless LANs (WLANs) and IEEE 802.15.4 based wireless personal area networks (WPANs) in the 2.4GHz band is an important issue for the operation of a home energy management system (HEMS) for smart grids. This paper proposes a coexistence scheme that is called a Hybrid station aided coexistence (HYSAC) scheme to solve this problem. This scheme employs a hybrid-station (H-STA) that possesses two types of network device functions. The scheme improves the data transmission quality of the WPAN devices which transmit energy management information such as power consumption. The proposed HYSAC scheme employs WLAN control frames, which are used to assign WPAN system traffic resources. Moreover, we propose a coexistence method to achieve excellent WLAN throughput where multiple WPANs coexist with a WLAN. We theoretically derive the performance of the proposed scheme by considering the QoS support in WLAN and show that the results of the simulation and theoretical analysis are in good agreement. The numerical results show that the HYSAC scheme decreases the beacon loss rate of WPAN to less than 1% when the WLAN system consists of 10 STAs under saturated traffic conditions. Furthermore, the WLAN throughput of the proposed synchronization method is shown to be 30.6% higher than that of the HYSAC scheme without synchronization when the WLAN that consists of 10 STAs coexists with four WPANs.

  • Error Reduction by Reflected Signals in Automotive Radar Network Systems

    Hiroyuki HATANO  Masahiro FUJII  Atsushi ITO  Yu WATANABE  Yusuke YOSHIDA  Takayoshi NAKAI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    597-605

    We focus on forward-looking radar network systems for automotive usages. By using multiple radars, the radar network systems will achieve reliable detection and wide observation area. The forward-looking systems by cameras are famous. In order to realize more reliable safety, the cameras had better be used with other sensing devices such as the radar network. In the radar network, processing of the data, which is derived from the multiple receivers, is important because the processing decides the estimation performance. In this paper, we will introduce our estimation algorithm which focuses on target existence probability and virtual receivers. The performance will be evaluated by simulated targets which are both single point model and 3D target model.

  • Design of Elevator-Group Control System to Save Energy Consumption by Dynamically Controlling the Number of Running Cars

    Yoshiyuki SAKAMAKI  Toshiaki TANAKA  Hisashi YAMADA  Toshio SUGIHARA  

     
    INVITED PAPER

      Vol:
    E98-A No:2
      Page(s):
    612-617

    In elevator-group control, the average number of running cars should be finely adjusted by the dynamically controlling the number of running cars (DCNRC). Traffic demand in an office building varies throughout the day. In this paper, we propose a new energy-saving method for elevator-group control that adjusts the number of running cars according to the traffic demand, simulate the proposed energy-saving method under nearly real traffic demand conditions of an office building, and reduce the daily energy consumption to the target level after several days.

  • A Low Complexity Fixed Sphere Decoder with Statistical Threshold for MIMO Systems

    Jangyong PARK  Yunho JUNG  Jaeseok KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:2
      Page(s):
    735-739

    In this letter, we propose a low complexity fixed sphere decoder (FSD) with statistical threshold for multiple-input and multiple-output (MIMO) systems. The proposed algorithm is developed by applying two threshold-based pruning algorithms using an initial detection and statistical noise constraint to the FSD. The proposed FSD algorithm is suitable for a fully pipelined hardware implementation and also has low complexity because the threshold of the proposed pruning algorithm is pre-calculated and independently applied to the path without sorting operation. Simulation results show that the proposed FSD has the performance of the original FSD as well as a low complexity compared to the original FSD and other low complexity FSD algorithms.

  • Approach for Constructing Public Key Encryption with Multi-Dimensional Range Query

    Yu ZHANG  Songfeng LU  Hua ZHAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:2
      Page(s):
    754-757

    Up until now, the best public key encryption with multi-dimensional range query (PKMDRQ) scheme has two problems which need to be resolved. One is that the scheme is selectively secure. The other is that the time of decryption is long. To address these problems, we present a method of converting a predicate encryption supporting inner product (IPE) scheme into a PKMDRQ scheme. By taking advantage of this approach, an instance is also proposed. The comparison between the previous work and ours shows that our scheme is more efficient over the time complexity. Moreover, our scheme is adaptively secure.

  • Multi-Hop Unidirectional Proxy Re-Encryption from Multilinear Maps

    Fei TANG  Hongda LI  Jinyong CHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:2
      Page(s):
    762-766

    In a proxy re-encryption (PRE) scheme, a delegator gives a re-encryption key to a semi-trusted proxy, then the proxy can transform the delegator's ciphertexts into one that can be decrypted by a delegatee who is appointed by the delegator. The proxy cannot, however, learn anything about the encrypted messages. At CCS 2007, Canetti and Hohenberger left an interesting open problem of how to design a PRE scheme that is simultaneously unidirectional and multi-hop. This is a rather interesting problem since in some applications we may need this feature, such as in the scenario of email forwarding, a delegatee wants forward his emails that received from the delegator to another delegatee. In this work we design an unidirectional and multi-hop PRE scheme by using multilinear maps. A shortcoming of our scheme is that its security relies on some rather strong assumptions in the setting of multilinear groups.

  • Improved Iterative Receiver for Co-channel Interference Suppression in MIMO-OFDM Systems

    Zhiting YAN  Guanghui HE  Weifeng HE  Zhigang MAO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:2
      Page(s):
    776-782

    Co-channel interference (CCI) is becoming a challenging factor that causes performance degradation in modern communication systems. The receiver equipped with multiple antennas can suppress such interference by exploiting spatial correlation. However, it is difficult to estimate the spatial covariance matrix (SCM) of CCI accurately with limited number of known symbols. To address this problem, this paper first proposes an improved SCM estimation method by shrinking the variance of eigenvalues. In addition, based on breadth-first tree search schemes and improved channel updating, a low complexity iterative detector is presented with channel preprocessing, which not only considers the existence of CCI but also reduces the computational complexity in terms of visited nodes in a search tree. Furthermore, by scaling the extrinsic soft information which is fed back to the input of detector, the detection performance loss due to max-log approximation is compensated. Simulation results show that the proposed iterative receiver provides improved signal to interference ratio (SIR) gain with low complexity, which demonstrate the proposed scheme is attractive in practical implementation.

  • Resource Allocation for MDC Multicast in CRNs with Imperfect Spectrum Sensing and Channel Feedback

    Shengyu LI  Wenjun XU  Zhihui LIU  Kai NIU  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:2
      Page(s):
    335-343

    In this paper, resource-efficient multiple description coding (MDC) multicast is investigated in cognitive radio networks with the consideration of imperfect spectrum sensing and imperfect channel feedback. Our objective is to maximize the system goodput, which is defined as the total successfully received data rate of all multicast users, while guaranteeing the maximum transmit power budget and the maximum average received interference constraint. Owing to the uncertainty of the spectrum state and the non-closed-form expression of the objective function, it is difficult to solve the problem directly. To circumvent this problem, a pretreatment is performed, in which we first estimate the real spectrum state of primary users and then propose a Gaussian approximation for the probability density functions of transmission channel gains to simplify the computation of the objective function. Thereafter, a two-stage resource allocation algorithm is presented to accomplish the subcarrier assignment, the optimal transmit channel gain to interference plus noise ratio (T-CINR) setting, and the transmit power allocation separately. Simulation results show that the proposed scheme is able to offset more than 80% of the performance loss caused by imperfect channel feedback when the feedback error is not high, while keeping the average interference on primary users below the prescribed threshold.

  • Zero Forcing Beamforming Based Coordinated Scheduling Algorithm for Downlink Coordinated Multi-Point Transmission System

    Ping WANG  Lei DING  Huifang PANG  Fuqiang LIU  Nguyen Ngoc VAN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:2
      Page(s):
    352-359

    In a multi-cell MIMO system, the rate of edge users is limited by the inter-cell co-channel interference. The CoMP scheme which includes Joint Process (JP) and Coordinated Scheduling/Beamforming (CS/CB) was developed to reduce the inter-cell interference and enhance the edge rate. Because CS/CB can alleviate the overhead of network, it gains attention recently. In this paper, a modified zero forcing beamforming (ZFBF) is applied to downlink transmission in a two-cell MIMO system. In order to enhance system sum rate, a novel coordinated user scheduling algorithm is proposed. Firstly, we select users with high correlation among cross-channels as candidates, and then group users from candidates with high orthogonality among direct-channels, and match user groups in different cells as the final scheduling group pair. Simulations show that the proposed algorithm can achieve a higher system sum rate with low complexity than traditional scheduling algorithms.

  • Fabrication of Step-Edge Vertical-Channel Organic Transistors by Selective Electro-Spray Deposition

    Hiroshi YAMAUCHI  Shigekazu KUNIYOSHI  Masatoshi SAKAI  Kazuhiro KUDO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    80-85

    Step-edge vertical channel organic field-effect transistors (SVC-OFETs) with a very short channel have been fabricated by a novel selective electrospray deposition (SESD) method. We propose the SESD method for the fabrication of SVC-OFETs based on a 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) semiconductor layer formed by SESD. In the SESD method, an electric field is applied between the nozzle and selective patterned electrodes on a substrate. We demonstrated that the solution accumulates on the selected electrode pattern by controlling the voltage applied to the electrode.

  • Enhanced Photocurrent Generation at a Spiro-OMeTAD/AuNPs-TiO2 Interface with Grating-coupled Surface Plasmon Excitation

    Hathaithip NINSONTI  Kazuma HARA  Supeera NOOTCHANAT  Weerasak CHOMKITICHAI  Akira BABA  Sukon PHANICHPHANT  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    104-109

    The fabrication of a grating structure formed by a solid-state electrolyte layer on a dye-TiO$_{2}$ film by the nanoimprinting technique using a polydimethylsiloxane (PDMS) stamp and its application in photoelectric conversion devices are described. The PDMS grating pattern is imprinted from blu-ray disc recordable. A silver electrode was deposited on the patterned solid-state electrolyte layers. Surface plasmon resonance (SPR) excitation was observed in the fabricated solar cells by irradiation with white light. The photoelectric conversion properties were measured to study the effect of the two types of SPR excitations, i.e., the propagating surface plasmon on the Ag grating surface and the localized surface plasmon from the Au nanoparticles on TiO$_{2}$.

  • Dispersibility Evaluation of Graphene Oxides with Alkyl Chain Groups by Using Optical Transparency

    Asami OHTAKE  Seiko UCHINO  Kunio AKEDO  Masanao ERA  Koichi SAKAGUCHI  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    127-128

    The numerical dispersibility measurement system was fabricated based on optical transparency to objectively evaluate undetectable dispersibility by naked eyes. The small deference of dispersibility and the dispersibility behaviors were simultaneously elucidated by the system. The abundance of octadecyl groups was also discussed from the result of dispersibility behaviors. The objective numerical evaluation is needed for precise analysis of dispersibility with respect to graphene, graphene derivatives and graphene related materials.

9061-9080hit(42807hit)