The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] AF(873hit)

141-160hit(873hit)

  • Improvement of High-Availability Seamless Redundancy (HSR) Unicast Traffic Performance Using Enhanced Port Locking (EPL) Approach

    Ibraheem Raed ALTAHA  Jong Myung RHEE  Hoang-Anh PHAM  

     
    PAPER

      Pubricized:
    2015/06/22
      Vol:
    E98-D No:9
      Page(s):
    1646-1656

    High-availability seamless redundancy (HSR) is a fault-tolerant protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy is forwarded on a separate physical path. HSR is a potential candidate for several fault-tolerant Ethernet applications including smart grid communications. However, one of the drawbacks of the HSR protocol is that it generates and circulates unnecessary frames within connected rings regardless of the presence of a destination node in the ring. This downside will degrade network performance and may deplete network resources. Previously, we proposed a simple but efficient approach to solving the above problem, namely, port locking (PL), which is based on the media access control address. The PL approach enables the network to learn the locations of the source and destination nodes gradually for each connection pair without using network control frames; the PL then prunes all the rings that do not contain the destination node by locking the corresponding ring's entrance ports at its QuadBox node. In this paper, we present an enhanced port-locking (EPL) approach that increases the number of pruned unused HSR rings. The analysis and corresponding simulation results show that the network traffic volume is significantly reduced for a large-sized HSR connected-rings network and consequently, network performance is greatly improved compared to the standard HSR protocol, and even PL.

  • Rollback Links Characterization for the Snapshot Routing Algorithm in Polar-Orbit Satellite Networks

    Zhu TANG  Chunqing WU  Zhenqian FENG  Wanrong YU  Baokang ZHAO  Wei HAN  

     
    PAPER-Satellite Communications

      Vol:
    E98-B No:8
      Page(s):
    1715-1724

    In this paper, we analyze the rollback traffic in polar-orbit satellite networks that use the snapshot routing algorithm. The concept of diamond rollback links and polar rollback links are presented for the first time, and the numbers of diamond and polar rollback links in polar-orbit satellite networks are concisely formulated. Simulations are performed based on the Iridium and Teledesic system in NS2, and the results finally confirm our analysis. With this work, we can not only simplify the rollback loops avoidance scheme, but also provide guidance for future satellite network routing optimization and topology design.

  • Association Scheme with Traffic Control for IEEE 802.11 Wireless LANs

    Jaeseon HWANG  Hyuk LIM  Seunghun OH  Byung-Tak LEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:8
      Page(s):
    1680-1689

    In wireless LANs, wireless clients are associated with one of access points (APs) to obtain network connectivity, and the AP performs network traffic relay between the wired infrastructure and wireless clients. If a client with a low transmission rate is associated with an AP, the throughput performance of all the clients that are associated with the AP is significantly degraded because of the long channel usage time of the low-rate client. Therefore, it is important to select an appropriate AP when a new client joins the wireless LAN to prevent the performance degradation. In this paper, we propose a traffic control that determines the feasible data traffic from an AP to the clients on the basis of the trade-off relationship between the equal-throughput and equal-airtime traffic allocation policies. We then propose a network-wide association algorithm that allows a client to be associated with the AP that can provide the highest throughput improvement. Simulation results indicate that the proposed algorithm achieves the better aggregate throughput and throughput fairness performances in IEEE 802.11 WLANs.

  • Simple Autonomous Active Period Selection with Reuse Mechanism for Cluster-Based Traffic Adaptive WSNs under Cluster Mobility

    Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1561-1570

    This paper investigates active period selection for cluster-based WSNs employing traffic adaptive IEEE 802.15.4 beacon enabled medium access control (MAC) under spatial non-uniform traffic and cluster mobility environments, and proposes a simple autonomous distributed superframe duration (SD) selection scheme to enhance network performance under such environments. The proposed scheme autonomously selects an active SD at each cluster head (CH) by using beacon reception power monitoring (conducted in distributed control manner) and also introduces a beacon status notice from sensor nodes (SNs) to their parent CHs in order to prevent unnecessary SD selection at CHs. Moreover, SD reuse mechanism and joint operation with previously proposed distributed backoff mechanism are proposed for the proposed SD selection scheme to further enhance the network performance. The results of computer simulation show that the proposed scheme can improve both the transmission and power efficiency performance of cluster-based WSNs under spatial non-uniform traffic and cluster mobility environments.

  • Maintenance of Communication Carrier Networks against Large-Scale Earthquakes

    Yoshikazu TAKAHASHI  Daisuke SATOH  

     
    INVITED PAPER

      Vol:
    E98-A No:8
      Page(s):
    1602-1609

    The network operations center of a communication carrier play an important and critical role in the early stage of disaster response because its function is the maintenance of communication services, which includes traffic control and restoration of services. This paper describes traffic control and restoration of services affected by the Great East Japan Earthquake. This paper discusses challenges on traffic congestion and restoration for future large-scale disasters.

  • A New Adaptive Notch Filtering Algorithm Based on Normalized Lattice Structure with Improved Mean Update Term

    Shinichiro NAKAMURA  Shunsuke KOSHITA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1482-1493

    In this paper, we propose Affine Combination Lattice Algorithm (ACLA) as a new lattice-based adaptive notch filtering algorithm. The ACLA makes use of the affine combination of Regalia's Simplified Lattice Algorithm (SLA) and Lattice Gradient Algorithm (LGA). It is proved that the ACLA has faster convergence speed than the conventional lattice-based algorithms. We conduct this proof by means of theoretical analysis of the mean update term. Specifically, we show that the mean update term of the ACLA is always larger than that of the conventional algorithms. Simulation examples demonstrate the validity of this analytical result and the utility of the ACLA. In addition, we also derive the step-size bound for the ACLA. Furthermore, we show that this step-size bound is characterized by the gradient of the mean update term.

  • Outage Performance of MIMO Multihop Relay Network with MRT/RAS Scheme

    Xinjie WANG  Yuzhen HUANG  Yansheng LI  Zhe-Ming LU  

     
    LETTER-Information Network

      Pubricized:
    2015/04/20
      Vol:
    E98-D No:7
      Page(s):
    1381-1385

    In this Letter, we investigate the outage performance of MIMO amplify-and-forward (AF) multihop relay networks with maximum ratio transmission/receiver antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of co-channel interference (CCI) or not. In particular, the lower bounds for the outage probability of MIMO AF multihop relay networks with/without CCI are derived, which provides an efficient means to evaluate the joint effects of key system parameters, such as the number of antennas, the interfering power, and the severity of channel fading. In addition, the asymptotic behavior of the outage probability is investigated, and the results reveal that the full diversity order can be achieved regardless of CCI. In addition, simulation results are provided to show the correctness of our derived analytical results.

  • A Bias-Free Adaptive Beamformer with GSC-APA

    Yun-Ki HAN  Jae-Woo LEE  Han-Sol LEE  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1295-1299

    We propose a novel bias-free adaptive beamformer employing an affine projection algorithm with the optimal regularization parameter. The generalized sidelobe canceller affine projection algorithm suffers from a bias of a weight vectors under the condition of no reference signals for output of an array in the beamforming application. First, we analyze the bias in the algorithm and prove that the bias can be eliminated through a large regularization parameter. However, this causes slow convergence at the initial state, so the regularization parameter should be controlled. Through the optimization of the regularization parameter, the proposed method achieves fast convergence without the bias at the steady-state. Experimental results show that the proposed beamformer not only removes the bias but also achieves both fast convergence and high steady-state output signal-to-interference-plus-noise ratio.

  • Traffic Engineering Based on Model Predictive Control

    Tatsuya OTOSHI  Yuichi OHSITA  Masayuki MURATA  Yousuke TAKAHASHI  Noriaki KAMIYAMA  Keisuke ISHIBASHI  Kohei SHIOMOTO  Tomoaki HASHIMOTO  

     
    PAPER-Network

      Vol:
    E98-B No:6
      Page(s):
    996-1007

    In recent years, the time variation of Internet traffic has increased due to the growth of streaming and cloud services. Backbone networks must accommodate such traffic without congestion. Traffic engineering with traffic prediction is one approach to stably accommodating time-varying traffic. In this approach, routes are calculated from predicted traffic to avoid congestion, but predictions may include errors that cause congestion. We propose prediction-based traffic engineering that is robust against prediction errors. To achieve robust control, our method uses model predictive control, a process control method based on prediction of system dynamics. Routes are calculated so that future congestion is avoided without sudden route changes. We apply calculated routes for the next time slot, and observe traffic. Using the newly observed traffic, we again predict traffic and re-calculate the routes. Repeating these steps mitigates the impact of prediction errors, because traffic predictions are corrected in each time slot. Through simulations using backbone network traffic traces, we demonstrate that our method can avoid the congestion that the other methods cannot.

  • Timing Performance Assessment and Improvement of Forward Collision Warning

    Peachanika THAMMAKAROON  Poj TANGAMCHIT  

     
    PAPER-Intelligent Transport System

      Vol:
    E98-A No:5
      Page(s):
    1105-1113

    We propose a systematic method for improving the response time of forward collision warning (FCW) on vehicles. First, a performance metric, called the warning lag time, is introduced. We use the warning lag time because its measurement is practical in real driving situations. Next, we discuss two ideas to improve this warning lag time, vertical and horizontal methods. The vertical method gives an additional warning, derived from the cause of a car crash, to a normal FCW system. The experiment showed that it can improve the warning lag time by an average of 0.31sec. compared with a traditional FCW system. The horizontal method uses distributed sensing among vehicles, which helps the vehicle see farther. It can also improve the warning lag time by an average of 1.08sec. compared with a single vehicle FCW.

  • Resistance-Switching Characteristics of Si-rich Oxide Evaluated by Using Ni Nanodots as Electrodes in Conductive AFM Measurements

    Akio OHTA  Chong LIU  Takashi ARAI  Daichi TAKEUCHI  Hai ZHANG  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    406-410

    Ni nanodots (NDs) used as nano-scale top electrodes were formed on a 10-nm-thick Si-rich oxide (SiO$_{mathrm{x}}$)/Ni bottom electrode by exposing a 2-nm-thick Ni layer to remote H$_{2}$-plasma (H$_{2}$-RP) without external heating, and the resistance-switching behaviors of SiO$_{mathrm{x}}$ were investigated from current-voltage ( extit{I--V}) curves. Atomic force microscope (AFM) analyses confirmed the formation of electrically isolated Ni NDs as a result of surface migration and agglomeration of Ni atoms promoted by the surface recombination of H radicals. From local extit{I--V} measurements performed by contacting a single Ni ND as a top electrode with a Rh coated Si cantilever, a distinct uni-polar type resistance switching behavior was observed repeatedly despite an average contact area between the Ni ND and the SiO$_{mathrm{x}}$ as small as $sim$ 1.9 $ imes$ 10$^{-12}$cm$^{2}$. This local extit{I--V} measurement technique is quite a simple method to evaluate the size scalability of switching properties.

  • Novel Synchronization and BER Improvement Method for Public Safety Mobile Communication Systems Employing Heterogeneous Cognitive Radio

    Masafumi MORIYAMA  Takeo FUJII  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:4
      Page(s):
    736-745

    In this paper, a novel synchronization method is proposed for a heterogeneous cognitive radio that combines public safety mobile communication systems (PMCSs) with commercial mobile wireless communication systems (CMWCSs). The proposed method enables self-synchronization of the PMCSs as well as co-synchronization of PMCSs and CMWCSs. In this paper, the self-synchronization indicates that each system obtains own timing synchronization. The co-synchronization indicates that a system recognizes data transmitted from other systems correctly. In our research, we especially focus on PMCS self-synchronization because it is one of the most difficult parts of our proposed cognitive radio that improves PMCS's communication quality. The proposed method is utilized for systems employing differentially encoded π/4 shift QPSK modulation. The synchronization can be achieved by correlating envelopes calculated from a PMCS's received signals with subsidiary information (SI) sent via a CMWCS. In this paper, the performance of the proposed synchronization method is evaluated by computer simulation. Moreover, because this SI can also be used to improve the bit error rate (BER) of PMCSs, BER improvement and efficient SI sending methods are derived, after which their performance is evaluated.

  • A New Content-Oriented Traffic Engineering for Content Distribution: CAR (Content Aware Routing)

    Shigeyuki YAMASHITA  Daiki IMACHI  Miki YAMAMOTO  Takashi MIYAMURA  Shohei KAMAMURA  Koji SASAYAMA  

     
    PAPER-Network System

      Vol:
    E98-B No:4
      Page(s):
    575-584

    Large-scale content transfer, especially video transfer, is now a dominant traffic component in the Internet. Originally, content transfer had a content-oriented feature, i.e., “Users do not care where content is retrieved. Users only take care of what content they obtain.” Conventional traffic engineering (TE) aims to obtain optimal routes for traffic between ingress and egress router pairs, i.e., TE has focused on a location-oriented approach that takes care of where to connect. With increased demand for content-oriented features for content traffic, TE needs to focus on content-oriented routing design. In this study, we therefore propose a novel approach to content-oriented TE, called content aware routing (CAR). In CAR, routes are designed for content and egress router pairs, i.e., content traffic toward a receiver-side router. Content demand can be flexibly distributed to multiple servers (i.e., repositories) providing the same content, meaning that content can be obtained from anywhere. CAR solves the optimization problem of minimizing maximum link utilization. If there are multiple optimal solutions, CAR selects a solution in which resource usage is minimized. Using numerical examples formulated by the linear programming problem, we evaluated CAR by comparing it with combinations of conventional content delivery networks and TE, i.e., location-oriented designs. Our numerical results showed that CAR improved maximum link utilization by up to 15%, with only a 5% increase of network resource usage.

  • New Impossible Differential Attack on SAFER Block Cipher Family

    Jingyuan ZHAO  Meiqin WANG  Jiazhe CHEN  Yuliang ZHENG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:3
      Page(s):
    843-852

    SAFER block cipher family consists of SAFER K, SAFER SK, SAFER+ and SAFER++. As the first proposed block cipher of them, SAFER K is strengthened by SAFER SK with improved key schedule. SAFER+ is designed as an AES candidate and Bluetooth uses a customized version of it for security. SAFER++, a variant of SAFER+, is among the cryptographic primitives selected for the second phase of the NESSIE project. In this paper, we take advantage of properties of the linear transformation and S-boxes to identify new impossible differentials for SAFER SK, SAFER+, and SAFER++. Moreover, we give the impossible differential attacks on 4-round SAFER SK/128 and 4-round SAFER+/128(256), 5-round SAFER++/128 and 5.5-round SAFER++/256. Our attacks significantly improve previously known impossible differential attacks on them. Specifically, our attacks on SAFER+ are the best attack in terms of number of rounds.

  • Fabrication of Nanosized Structures on Nafion Membranes by Thermal Nanoimprinting

    Nobuya HIROSHIBA  Wataru YANO  Ryuji OKUMURA  Yo ICHIKAWA  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    133-135

    We demonstrated a novel technique to fabricate nanosized structures on a Nafion membrane, using thermal nanoimprinting with alinebreak $5 imes 5$,$mu $m$^{mathrm{2}}$ square pattern Si mold without any polymer damage. A 24,MPa thermal imprinting pressure was used for 10,min. We observed high aspect ratio ($sim$1:10) pillars on the surface after imprinting at 200$^{circ}$C. Finally, we used a novel quartz mold with a 200,nm resolution dot pattern.

  • Design of Elevator-Group Control System to Save Energy Consumption by Dynamically Controlling the Number of Running Cars

    Yoshiyuki SAKAMAKI  Toshiaki TANAKA  Hisashi YAMADA  Toshio SUGIHARA  

     
    INVITED PAPER

      Vol:
    E98-A No:2
      Page(s):
    612-617

    In elevator-group control, the average number of running cars should be finely adjusted by the dynamically controlling the number of running cars (DCNRC). Traffic demand in an office building varies throughout the day. In this paper, we propose a new energy-saving method for elevator-group control that adjusts the number of running cars according to the traffic demand, simulate the proposed energy-saving method under nearly real traffic demand conditions of an office building, and reduce the daily energy consumption to the target level after several days.

  • Behavior Analysis of Video Application Users on Smart Phones Based on State Transition Diagram

    Norihiro FUKUMOTO  Shigehiro ANO  Shigeki GOTO  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    42-50

    Video traffic occupies a major part of current mobile traffic. The characteristics of video traffic are dominated by the behavior of the video application users. This paper uses a state transition diagram to analyze the behavior of video application users on smart phones. Video application users are divided into two categories; keyword search users and initial screen users. They take different first action in video viewing. The result of our analysis shows that the patience of video application users depends on whether they have a specific purpose when they launch a video application or not. Mobile network operators can improve the QoE of video application users by utilizing the results of this study.

  • Time-Dimensional Traffic Engineering with Storage Aware Routing

    Shigeyuki YAMASHITA  Tomohiko YAGYU  Miki YAMAMOTO  

     
    PAPER

      Vol:
    E97-B No:12
      Page(s):
    2641-2649

    Because of the popularity of rich content, such as video files, the amount of traffic on the Internet continues to grow every year. Not only is the overall traffic increasing, but also the temporal fluctuations in traffic are increasing, and differences in the amounts of traffic between peak and off-peak periods are becoming very large. Consequently, efficient use of link bandwidth is becoming more challenging. In this paper, we propose a new system for content distribution: storage aware routing (SAR). With SAR, routers having large storage capacities can exploit those links that are underutilized. Our performance evaluations show that SAR can smooth the fluctuations in link utilization.

  • Modified Pseudo Affine Projection Algorithm for Feedback Cancellation in Hearing Aids

    Keunsang LEE  Younghyun BAEK  Dongwook KIM  Junil SOHN  Youngcheol PARK  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:12
      Page(s):
    2645-2648

    This paper presents an adaptive feedback canceller (AFC) based on a pseudo affine projection (PAP) algorithm that can provide fast and stable adaptation to the time-varying environment. The proposed algorithm utilizes the adaptive linear prediction (LP) to obtain the LP coefficients of input signal model and the inverse gain filter (IGF) to alleviate the effect of compensation gain. As a result, when the input is model as an AR signal, the proposed algorithm satisfies the condition for having an almost unbiased estimatie of the feedback path and then its performance is relatively independent of the gain setting of hearing aids. Simulation results showed that the proposed algorithm is capable of obtaining unbaised feedback path estimates and high speech quality.

  • Traffic-Aware Network Planning and Green Operation with BS Sleeping and Cell Zooming

    Shan ZHANG  Yiqun WU  Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Network

      Vol:
    E97-B No:11
      Page(s):
    2337-2346

    The traffic load of cellular networks varies in both time and spatial domains, causing many base stations (BS) to be under-utilized. Assisted by cell zooming, dynamic BS sleep control is considered as an effective way to improve energy efficiency during low traffic hours. Therefore, how densely the BSs should be deployed with cell zooming and BS sleeping is an important issue. In this paper, we explore the energy-optimal cellular network planning problem with dynamic BS sleeping and cell zooming for the cases in which traffic is uniformly distributed in space but time-varying. To guarantee the quality of multi-class services, an approximation method based on Erlang formula is proposed. Extensive simulations under our predefined scenarios show that about half of energy consumption can be saved through dynamic BS sleeping and power control. Surprisingly, the energy-optimal BS density we obtained is larger than the one without considering BS sleeping. In other words, deploying more BSs may help to save energy if dynamic BS sleeping is executed.

141-160hit(873hit)