The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ASE(2849hit)

601-620hit(2849hit)

  • Scan-Based Side-Channel Attack on the Camellia Block Cipher Using Scan Signatures

    Huiqian JIANG  Mika FUJISHIRO  Hirokazu KODERA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E98-A No:12
      Page(s):
    2547-2555

    Camellia is a block cipher jointly developed by Mitsubishi and NTT of Japan. It is designed suitable for both software and hardware implementations. One of the design-for-test techniques using scan chains is called scan-path test, in which testers can observe and control the registers inside the LSI chip directly in order to check if the LSI chip correctly operates or not. Recently, a scan-based side-channel attack is reported which retrieves the secret information from the cryptosystem using scan chains. In this paper, we propose a scan-based attack method on the Camellia cipher using scan signatures. Our proposed method is based on the equivalent transformation of the Camellia algorithm and the possible key candidate reduction in order to retrieve the secret key. Experimental results show that our proposed method sucessfully retrieved its 128-bit secret key using 960 plaintexts even if the scan chain includes the Camellia cipher and other circuits and also sucessfully retrieves its secret key on the SASEBO-GII board, which is a side-channel attack standard evaluation board.

  • Numerical Analyses of All-Optical Retiming Switches Using Cascade of Second Harmonic Generation and Difference Frequency Mixing in Periodically Poled Lithium Niobate Waveguides

    Yutaka FUKUCHI  Kouji HIRATA  Joji MAEDA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E98-C No:12
      Page(s):
    1143-1149

    In all-optical switches using the cascade of second harmonic generation and difference frequency mixing in periodically poled lithium niobate (PPLN) waveguide devices, walk-off between the fundamental and second harmonic pulses causes crosstalk between neighboring symbols, and limits the switching performance. In this paper, we numerically study retiming characteristics of all-optical switches that employ the PPLN waveguide devices with consideration for the effects of the crosstalk and for the input timing of the data and clock pulses. We find that the time offset between the data and clock pulses can control the timing jitter of the switched output; an appropriate offset can reduce the jitter while improving the switching efficiency.

  • Modeling and Testing of Network Protocols with Parallel State Machines

    Xia YIN  Jiangyuan YAO  Zhiliang WANG  Xingang SHI  Jun BI  Jianping WU  

     
    PAPER-Network

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2091-2104

    The researches on model-based testing mainly focus on the models with single component, such as FSM and EFSM. For the network protocols which have multiple components communicating with messages, CFSM is a widely accepted solution. But in some network protocols, parallel and data-shared components maybe exist in the same network entity. It is infeasible to precisely specify such protocol by existing models. In this paper we present a new model, Parallel Parameterized Extended Finite State Machine (PaP-EFSM). A protocol system can be modeled with a group of PaP-EFSMs. The PaP-EFSMs work in parallel and they can read external variables form each other. We present a 2-stage test generation approach for our new models. Firstly, we generate test sequences for internal variables of each machine. They may be non-executable due to external variables. Secondly, we process the external variables. We make the sequences for internal variables executable and generate more test sequences for external variables. For validation, we apply this method to the conformance testing of real-life protocols. The devices from different vendors are tested and implementation faults are exposed.

  • Register-Based Process Virtual Machine Acceleration Using Hardware Extension with Hybrid Execution

    Surachai THONGKAEW  Tsuyoshi ISSHIKI  Dongju LI  Hiroaki KUNIEDA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2505-2518

    The Process Virtual Machine (VM) is typical software that runs applications inside operating systems. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware, operating system and allows bytecodes (portable code) to be executed in the same way on any other platforms. The Process VMs are implemented using an interpreter to interpret bytecode instead of direct execution of host machine codes. Thus, the bytecode execution is slower than those of the compiled programming language execution. Several techniques including our previous paper, the “Fetch/Decode Hardware Extension”, have been proposed to speed up the interpretation of Process VMs. In this paper, we propose an additional methodology, the “Hardware Extension with Hybrid Execution” to further enhance the performance of Process VMs interpretation and focus on Register-based model. This new technique provides an additional decoder which can classify bytecodes into either simple or complex instructions. With “Hybrid Execution”, the simple instruction will be directly executed on hardware of native processor. The complex instruction will be emulated by the “extra optimized bytecode software handler” of native processor. In order to eliminate the overheads of retrieving and storing operand on memory, we utilize the physical registers instead of (low address) virtual registers. Moreover, the combination of 3 techniques: Delay scheduling, Mode predictor HW and Branch/goto controller can eliminate all of the switching mode overheads between native mode and bytecode mode. The experimental results show the improvements of execution speed on the Arithmetic instructions, loop & conditional instructions and method invocation & return instructions can be achieved up to 16.9x, 16.1x and 3.1x respectively. The approximate size of the proposed hardware extension is 0.04mm2 (or equivalent to 14.81k gates) and consumes an additional power of only 0.24mW. The stated results are obtained from logic synthesis using the TSMC 90nm technology @ 200MHz.

  • Speech Enhancement Combining NMF Weighted by Speech Presence Probability and Statistical Model

    Yonggang HU  Xiongwei ZHANG  Xia ZOU  Gang MIN  Meng SUN  Yunfei ZHENG  

     
    LETTER-Speech and Hearing

      Vol:
    E98-A No:12
      Page(s):
    2701-2704

    The conventional non-negative matrix factorization (NMF)-based speech enhancement is accomplished by updating iteratively with the prior knowledge of the clean speech and noise spectra bases. With the probabilistic estimation of whether the speech is present or not in a certain frame, this letter proposes a speech enhancement algorithm incorporating the speech presence probability (SPP) obtained via noise estimation to the NMF process. To take advantage of both the NMF-based and statistical model-based approaches, the final enhanced speech is achieved by applying a statistical model-based filter to the output of the SPP weighted NMF. Objective evaluations using perceptual evaluation of speech quality (PESQ) on TIMIT with 20 noise types at various signal-to-noise ratio (SNR) levels demonstrate the superiority of the proposed algorithm over the conventional NMF and statistical model-based baselines.

  • Time-Frequency Multiplex Estimator Design with Joint Tx IQ Imbalance, CFO, Channel Estimation, and Compensation for Multi-Carrier Systems

    Juinn-Horng DENG  Kuo-Tai FENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2322-2329

    A low-complexity time-frequency multiplex estimator and low-complexity equalizer transceiver design are proposed to combat the problems of RF impairment associated with zero-IF transceiver of multi-carrier systems. Moreover, the proposed preambles can estimate the transmitter (TX) in-phase and quadrature-phase (IQ) imbalance, carrier frequency offset (CFO), and channel impulse response parameters. The proposed system has two parts. First, all parameters of the impairments are estimated by the designed time-frequency multiplex estimator. Second, the estimated parameters are used to compensate the above problems and detect the transmitted signal with low complexity. Simulation results confirm that the proposed estimator performs reliably with respect to IQ imbalance, CFO, and multipath fading channel effects.

  • Compact Sparse Coding for Ground-Based Cloud Classification

    Shuang LIU  Zhong ZHANG  Xiaozhong CAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/08/17
      Vol:
    E98-D No:11
      Page(s):
    2003-2007

    Although sparse coding has emerged as an extremely powerful tool for texture and image classification, it neglects the relationship of coding coefficients from the same class in the training stage, which may cause a decline in the classification performance. In this paper, we propose a novel coding strategy named compact sparse coding for ground-based cloud classification. We add a constraint on coding coefficients into the objective function of traditional sparse coding. In this way, coding coefficients from the same class can be forced to their mean vector, making them more compact and discriminative. Experiments demonstrate that our method achieves better performance than the state-of-the-art methods.

  • Flexible Polymer-Wall-Stabilized Blue-Phase Liquid Crystal Cell Using Plastic Substrates

    Hideki SAKAI  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E98-C No:11
      Page(s):
    1043-1046

    To develop a flexible liquid crystal display (LCD) with a wide viewing angle range and high contrast ratio, we have proposed a flexible blue-phase LC device sustained by polymer walls inside the LC cell. We clarified that the polymer walls can maintain a constant cell gap and suppress the generation of alignment defects of the blue-phase LC in a bending state.

  • Quadrature Squeezing and IQ De-Multiplexing of QPSK Signals by Sideband-Assisted Dual-Pump Phase Sensitive Amplifiers

    Mingyi GAO  Takayuki KUROSU  Karen SOLIS-TRAPALA  Takashi INOUE  Shu NAMIKI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:11
      Page(s):
    2227-2237

    High gain extinction ratio and stable control of the phase in phase sensitive amplification are fundamental to realize either phase regeneration or quadrature squeezing of phase modulated signals in an efficient and robust manner. In this paper, we show that a combination of our previously demonstrated “sideband-assisted” dual-pump phase sensitive amplifier with a gain extinction ratio of more than 25dB, and a phase-locked loop based stabilization technique, enable efficient QPSK quadrature squeezing. Its stable operation is exploited to realize phase de-multiplexing of QPSK signals into BPSK tributaries. The phase de-multiplexed signals are evaluated through measurement of constellation diagrams, eye diagrams and more importantly, BER curves. The de-multiplexed BPSK signals exhibited an OSNR penalty of less than 1dB compared to the back-to-back BPSK signals.

  • Multiple Attribute Authorities Attribute-Based Designated Confirmer Signature Scheme with Unified Verification

    Yan REN  Guilin WANG  Yunhong HU  Qiuyan WANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:11
      Page(s):
    2341-2348

    In this paper, we first propose a notion of multiple authorities attribute-based designated confirmer signature scheme with unified verification. In a multiple authorities attribute-based designated confirmer signature scheme with unified verification, both the signer and the designated confirmer can run the same protocols to confirm a valid signature or disavow an invalid signature. Then, we construct a multiple authorities attribute-based designated confirmer signature scheme with unified verification. Finally, we prove the correctness and security of the proposed scheme.

  • Improvement of Colorization-Based Coding Using Optimization by Novel Colorization Matrix Construction and Adaptive Color Conversion

    Kazu MISHIBA  Takeshi YOSHITOME  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/07/31
      Vol:
    E98-D No:11
      Page(s):
    1943-1949

    This study improves the compression efficiency of Lee's colorization-based coding framework by introducing a novel colorization matrix construction and an adaptive color conversion. Colorization-based coding methods reconstruct color components in the decoder by colorization, which adds color to a base component (a grayscale image) using scant color information. The colorization process can be expressed as a linear combination of a few column vectors of a colorization matrix. Thus it is important for colorization-based coding to make a colorization matrix whose column vectors effectively approximate color components. To make a colorization matrix, Lee's colorization-based coding framework first obtains a base and color components by RGB-YCbCr color conversion, and then performs a segmentation method on the base component. Finally, the entries of a colorization matrix are created using the segmentation results. To improve compression efficiency on this framework, we construct a colorization matrix based on a correlation of base-color components. Furthermore, we embed an edge-preserving smoothing filtering process into the colorization matrix to reduce artifacts. To achieve more improvement, our method uses adaptive color conversion instead of RGB-YCbCr color conversion. Our proposed color conversion maximizes the sum of the local variance of a base component, which resulted in increment of the difference of intensities at region boundaries. Since segmentation methods partition images based on the difference, our adaptive color conversion leads to better segmentation results. Experiments showed that our method has higher compression efficiency compared with the conventional method.

  • Phase-Based Window Matching with Geometric Correction for Multi-View Stereo

    Shuji SAKAI  Koichi ITO  Takafumi AOKI  Takafumi WATANABE  Hiroki UNTEN  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E98-D No:10
      Page(s):
    1818-1828

    Methods of window matching to estimate 3D points are the most serious factors affecting the accuracy, robustness, and computational cost of Multi-View Stereo (MVS) algorithms. Most existing MVS algorithms employ window matching based on Normalized Cross-Correlation (NCC) to estimate the depth of a 3D point. NCC-based window matching estimates the displacement between matching windows with sub-pixel accuracy by linear/cubic interpolation, which does not represent accurate sub-pixel values of matching windows. This paper proposes a technique of window matching that is very accurate using Phase-Only Correlation (POC) with geometric correction for MVS. The accurate sub-pixel displacement between two matching windows can be estimated by fitting the analytical correlation peak model of the POC function. The proposed method also corrects the geometric transformations of matching windows by taking into consideration the 3D shape of a target object. The use of the proposed geometric correction approach makes it possible to achieve accurate 3D reconstruction from multi-view images even for images with large transformations. The proposed method demonstrates more accurate 3D reconstruction from multi-view images than the conventional methods in a set of experiments.

  • Strongly Secure Scan Design Using Generalized Feed Forward Shift Registers

    Hideo FUJIWARA  Katsuya FUJIWARA  

     
    LETTER-Dependable Computing

      Pubricized:
    2015/06/24
      Vol:
    E98-D No:10
      Page(s):
    1852-1855

    In our previous work [12], [13], we introduced generalized feed-forward shift registers (GF2SR, for short) to apply them to secure and testable scan design, where we considered the security problem from the viewpoint of the complexity of identifying the structure of GF2SRs. Although the proposed scan design is secure in the sense that the structure of a GF2SR cannot be identified only from the primary input/output relation, it may not be secure if part of the contents of the circuit leak out. In this paper, we introduce a more secure concept called strong security such that no internal state of strongly secure circuits leaks out, and present how to design such strongly secure GF2SRs.

  • Measurement-Based Spectrum Database for Flexible Spectrum Management

    Koya SATO  Masayuki KITAMURA  Kei INAGE  Takeo FUJII  

     
    PAPER

      Vol:
    E98-B No:10
      Page(s):
    2004-2013

    In this paper, we propose the novel concept of a spectrum database for improving the efficiency of spectrum utilization. In the current design of TV white space spectrum databases, a propagation model is utilized to determine the spectrum availability. However, this propagation model has poor accuracy for radio environment estimation because it requires a large interference margin for the PU coverage area to ensure protection of primary users (PUs); thus, it decreases the spectrum sharing efficiency. The proposed spectrum database consists of radio environment measurement results from sensors on mobile terminals such as vehicles and smart phones. In the proposed database, actual measurements of radio signals are used to estimate radio information regarding PUs. Because the sensors on mobile terminals can gather a large amount of data, accurate propagation information can be obtained, including information regarding propagation loss and shadowing. In this paper, we first introduce the architecture of the proposed spectrum database. Then, we present experimental results for the database construction using actual TV broadcast signals. Additionally, from the evaluation results, we discuss the extent to which the proposed database can mitigate the excess interference margin.

  • Collective Activity Recognition by Attribute-Based Spatio-Temporal Descriptor

    Changhong CHEN  Hehe DOU  Zongliang GAN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/07/22
      Vol:
    E98-D No:10
      Page(s):
    1875-1878

    Collective activity recognition plays an important role in high-level video analysis. Most current feature representations look at contextual information extracted from the behaviour of nearby people. Every person needs to be detected and his pose should be estimated. After extracting the feature, hierarchical graphical models are always employed to model the spatio-temporal patterns of individuals and their interactions, and so can not avoid complex preprocessing and inference operations. To overcome these drawbacks, we present a new feature representation method, called attribute-based spatio-temporal (AST) descriptor. First, two types of information, spatio-temporal (ST) features and attribute features, are exploited. Attribute-based features are manually specified. An attribute classifier is trained to model the relationship between the ST features and attribute-based features, according to which the attribute features are refreshed. Then, the ST features, attribute features and the relationship between the attributes are combined to form the AST descriptor. An objective classifier can be specified on the AST descriptor and the weight parameters of the classifier are used for recognition. Experiments on standard collective activity benchmark sets show the effectiveness of the proposed descriptor.

  • Scalable Hardware Winner-Take-All Neural Network with DPLL

    Masaki AZUMA  Hiroomi HIKAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2015/07/21
      Vol:
    E98-D No:10
      Page(s):
    1838-1846

    Neural networks are widely used in various fields due to their superior learning abilities. This paper proposes a hardware winner-take-all neural network (WTANN) that employs a new winner-take-all (WTA) circuit with phase-modulated pulse signals and digital phase-locked loops (DPLLs). The system uses DPLL as a computing element, so all input values are expressed by phases of rectangular signals. The proposed WTA circuit employs a simple winner search circuit. The proposed WTANN architecture is described by very high speed integrated circuit (VHSIC) hardware description language (VHDL), and its feasibility was tested and verified through simulations and experiments. Conventional WTA takes a global winner search approach, in which vector distances are collected from all neurons and compared. In contrast, the WTA in the proposed system is carried out locally by a distributed winner search circuit among neurons. Therefore, no global communication channels with a wide bandwidth between the winner search module and each neuron are required. Furthermore, the proposed WTANN can easily extend the system scale, merely by increasing the number of neurons. The circuit size and speed were then evaluated by applying the VHDL description to a logic synthesis tool and experiments using a field programmable gate array (FPGA). Vector classifications with WTANN using two kinds of data sets, Iris and Wine, were carried out in VHDL simulations. The results revealed that the proposed WTANN achieved valid learning.

  • An Improved Platform for Multi-Agent Based Stock Market Simulation in Distributed Environment

    Ce YU  Xiang CHEN  Chunyu WANG  Hutong WU  Jizhou SUN  Yuelei LI  Xiaotao ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2015/06/25
      Vol:
    E98-D No:10
      Page(s):
    1727-1735

    Multi-agent based simulation has been widely used in behavior finance, and several single-processed simulation platforms with Agent-Based Modeling (ABM) have been proposed. However, traditional simulations of stock markets on single processed computers are limited by the computing capability since financial researchers need larger and larger number of agents and more and more rounds to evolve agents' intelligence and get more efficient data. This paper introduces a distributed multi-agent simulation platform, named PSSPAM, for stock market simulation focusing on large scale of parallel agents, communication system and simulation scheduling. A logical architecture for distributed artificial stock market simulation is proposed, containing four loosely coupled modules: agent module, market module, communication system and user interface. With the customizable trading strategies inside, agents are deployed to multiple computing nodes. Agents exchange messages with each other and with the market based on a customizable network topology through a uniform communication system. With a large number of agent threads, the round scheduling strategy is used during the simulation, and a worker pool is applied in the market module. Financial researchers can design their own financial models and run the simulation through the user interface, without caring about the complexity of parallelization and related problems. Two groups of experiments are conducted, one with internal communication between agents and the other without communication between agents, to verify PSSPAM to be compatible with the data from Euronext-NYSE. And the platform shows fair scalability and performance under different parallelism configurations.

  • Availability Analysis of a Multibase System with Lateral Resupply between Bases

    Naoki OKUDA  Nobuyuki TAMURA  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2084-2090

    In this paper, we study on an availability analysis for a multibase system with lateral resupply of spare items between bases. We construct a basic model that a spare item of a base is transported for operation to another base without spare upon occurrence of failure, and simultaneously, the base that supplies the spare item receives the failed item of the other base for repair. We propose an approximation method to obtain the availability of the system and show the accuracy of the solution through numerical experiments. Also, two modified models are constructed to show the efficiency of the basic model. The two models modify the assumption on the lateral resupply of spare items between bases in the basic model. We numerically illustrate that the basic model can increase the availability of the system compared with the two modified models through Monte Carlo simulation.

  • Exploiting Social Relationship for Opportunistic Routing in Mobile Social Networks

    Zhenxiang GAO  Yan SHI  Shanzhi CHEN  Qihan LI  

     
    PAPER-Network

      Vol:
    E98-B No:10
      Page(s):
    2040-2048

    Routing is a challenging issue in mobile social networks (MSNs) because of time-varying links and intermittent connectivity. In order to enable nodes to make right decisions while forwarding messages, exploiting social relationship has become an important method for designing efficient routing protocols in MSNs. In this paper, we first use the temporal evolution graph model to accurately capture the dynamic topology of the MSN. Based on the model, we introduce the social relationship metric for detecting the quality of human social relationship from contact history records. Utilizing this metric, we propose social relationship based betweenness centrality metric to identify influential nodes to ensure messages forwarded by the nodes with stronger social relationship and higher likelihood of contacting other nodes. Then, we present SRBet, a novel social-based forwarding algorithm, which utilizes the aforementioned metric to enhance routing performance. Simulations have been conducted on two real world data sets and results demonstrate that the proposed forwarding algorithm achieves better performances than the existing algorithms.

  • Matrix Approach for the Seasonal Infectious Disease Spread Prediction

    Hideo HIROSE  Masakazu TOKUNAGA  Takenori SAKUMURA  Junaida SULAIMAN  Herdianti DARWIS  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2010-2017

    Prediction of seasonal infectious disease spread is traditionally dealt with as a function of time. Typical methods are time series analysis such as ARIMA (autoregressive, integrated, and moving average) or ANN (artificial neural networks). However, if we regard the time series data as the matrix form, e.g., consisting of yearly magnitude in row and weekly trend in column, we may expect to use a different method (matrix approach) to predict the disease spread when seasonality is dominant. The MD (matrix decomposition) method is the one method which is used in recommendation systems. The other is the IRT (item response theory) used in ability evaluation systems. In this paper, we apply these two methods to predict the disease spread in the case of infectious gastroenteritis caused by norovirus in Japan, and compare the results obtained by using two conventional methods in forecasting, ARIMA and ANN. We have found that the matrix approach is simple and useful in prediction for the seasonal infectious disease spread.

601-620hit(2849hit)