The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

521-540hit(18690hit)

  • Study on Wear Debris Distribution and Performance Degradation in Low Frequency Fretting Wear of Electrical Connector

    Yanyan LUO  Jingzhao AN  Jingyuan SU  Zhaopan ZHANG  Yaxin DUAN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    93-102

    Aiming at the problem of the deterioration of the contact performance caused by the wear debris generated during the fretting wear of the electrical connector, low-frequency fretting wear experiments were carried out on the contacts of electrical connectors, the accumulation and distribution of the wear debris were detected by the electrical capacitance tomography technology; the influence of fretting cycles, vibration direction, vibration frequency and vibration amplitude on the accumulation and distribution of wear debris were analyzed; the correlation between characteristic value of wear debris and contact resistance value was studied, and a performance degradation model based on the accumulation and distribution of wear debris was built. The results show that fretting wear and performance degradation are the most serious in axial vibration; the characteristic value of wear debris and contact resistance are positively correlated with the fretting cycles, vibration frequency and vibration amplitude; there is a strong correlation between the sum of characteristic value of wear debris and the contact resistance value; the prediction error of ABC-SVR model of fretting wear performance degradation of electrical connectors constructed by the characteristic value of wear debris is less than 6%. Therefore, the characteristic value of wear debris in contact subareas can quantitatively describe the degree of fretting wear and the process of performance degradation.

  • Bending Loss Analysis of Chalcogenide Glass Channel Waveguides for Mid-Infrared Astrophotonic Devices Open Access

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2022/08/25
      Vol:
    E106-C No:3
      Page(s):
    107-110

    In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.

  • DAG-Pathwidth: Graph Algorithmic Analyses of DAG-Type Blockchain Networks

    Shoji KASAHARA  Jun KAWAHARA  Shin-ichi MINATO  Jumpei MORI  

     
    PAPER

      Pubricized:
    2022/12/22
      Vol:
    E106-D No:3
      Page(s):
    272-283

    This paper analyzes a blockchain network forming a directed acyclic graph (DAG), called a DAG-type blockchain, from the viewpoint of graph algorithm theory. To use a DAG-type blockchain, NP-hard graph optimization problems on the DAG are required to be solved. Although various problems for undirected and directed graphs can be efficiently solved by using the notions of graph parameters, these currently known parameters are meaningless for DAGs, which implies that it is hopeless to design efficient algorithms based on the parameters for such problems. In this work, we propose a novel graph parameter for directed graphs called a DAG-pathwidth, which represents the closeness to a directed path. This is an extension of the pathwidth, a well-known graph parameter for undirected graphs. We analyze the features of the DAG-pathwidth and prove that computing the DAG-pathwidth of a DAG (directed graph in general) is NP-complete. Finally, we propose an efficient algorithm for a variant of the maximum k-independent set problem for the DAG-type blockchain when the DAG-pathwidth of the input graph is small.

  • A Subclass of Mu-Calculus with the Freeze Quantifier Equivalent to Register Automata

    Yoshiaki TAKATA  Akira ONISHI  Ryoma SENDA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:3
      Page(s):
    294-302

    Register automaton (RA) is an extension of finite automaton by adding registers storing data values. RA has good properties such as the decidability of the membership and emptiness problems. Linear temporal logic with the freeze quantifier (LTL↓) proposed by Demri and Lazić is a counterpart of RA. However, the expressive power of LTL↓ is too high to be applied to automatic verification. In this paper, we propose a subclass of modal µ-calculus with the freeze quantifier, which has the same expressive power as RA. Since a conjunction ψ1 ∧ ψ2 in a general LTL↓ formula cannot be simulated by RA, the proposed subclass prohibits at least one of ψ1 and ψ2 from containing the freeze quantifier or a temporal operator other than X (next). Since the obtained subclass of LTL↓ does not have the ability to represent a cycle in RA, we adopt µ-calculus over the subclass of LTL↓, which allows recursive definition of temporal formulas. We provide equivalent translations from the proposed subclass of µ-calculus to RA and vice versa and prove their correctness.

  • Calculation Solitaire is NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    LETTER

      Pubricized:
    2022/10/31
      Vol:
    E106-D No:3
      Page(s):
    328-332

    Calculation is a solitaire card game with a standard 52-card deck. Initially, cards A, 2, 3, and 4 of any suit are laid out as four foundations. The remaining 48 cards are piled up as the stock, and there are four empty tableau piles. The purpose of the game is to move all cards of the stock to foundations. The foundation starting with A is to be built up in sequence from an ace to a king. The other foundations are similarly built up, but by twos, threes, and fours from 2, 3, and 4 until a king is reached. Here, a card of rank i may be used as a card of rank i + 13j for j ∈ {0, 1, 2, 3}. During the game, the player moves (i) the top card of the stock either onto a foundation or to the top of a tableau pile, or (ii) the top card of a tableau pile onto a foundation. We prove that the generalized version of Calculation Solitaire is NP-complete.

  • Split and Eliminate: A Region-Based Segmentation for Hardware Trojan Detection

    Ann Jelyn TIEMPO  Yong-Jin JEONG  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/12/09
      Vol:
    E106-D No:3
      Page(s):
    349-356

    Using third-party intellectual properties (3PIP) has been a norm in IC design development process to meet the time-to-market demand and at the same time minimizing the cost. But this flow introduces a threat, such as hardware trojan, which may compromise the security and trustworthiness of underlying hardware, like disclosing confidential information, impeding normal execution and even permanent damage to the system. In years, different detections methods are explored, from just identifying if the circuit is infected with hardware trojan using conventional methods to applying machine learning where it identifies which nets are most likely are hardware trojans. But the performance is not satisfactory in terms of maximizing the detection rate and minimizing the false positive rate. In this paper, a new hardware trojan detection approach is proposed where gate-level netlist is segmented into regions first before analyzing which nets might be hardware trojans. The segmentation process depends on the nets' connectivity, more specifically by looking on each fanout points. Then, further analysis takes place by means of computing the structural similarity of each segmented region and differentiate hardware trojan nets from normal nets. Experimental results show 100% detection of hardware trojan nets inserted on each benchmark circuits and an overall average of 1.38% of false positive rates which resulted to a higher accuracy with an average of 99.31%.

  • A Non-Revisiting Equilibrium Optimizer Algorithm

    Baohang ZHANG  Haichuan YANG  Tao ZHENG  Rong-Long WANG  Shangce GAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/20
      Vol:
    E106-D No:3
      Page(s):
    365-373

    The equilibrium optimizer (EO) is a novel physics-based meta-heuristic optimization algorithm that is inspired by estimating dynamics and equilibrium states in controlled volume mass balance models. As a stochastic optimization algorithm, EO inevitably produces duplicated solutions, which is wasteful of valuable evaluation opportunities. In addition, an excessive number of duplicated solutions can increase the risk of the algorithm getting trapped in local optima. In this paper, an improved EO algorithm with a bis-population-based non-revisiting (BNR) mechanism is proposed, namely BEO. It aims to eliminate duplicate solutions generated by the population during iterations, thus avoiding wasted evaluation opportunities. Furthermore, when a revisited solution is detected, the BNR mechanism activates its unique archive population learning mechanism to assist the algorithm in generating a high-quality solution using the excellent genes in the historical information, which not only improves the algorithm's population diversity but also helps the algorithm get out of the local optimum dilemma. Experimental findings with the IEEE CEC2017 benchmark demonstrate that the proposed BEO algorithm outperforms other seven representative meta-heuristic optimization techniques, including the original EO algorithm.

  • Acoustic HMMs to Detect Abnormal Respiration with Limited Training Data

    Masaru YAMASHITA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2022/12/19
      Vol:
    E106-D No:3
      Page(s):
    374-380

    In many situations, abnormal sounds, called adventitious sounds, are included with the lung sounds of a subject suffering from pulmonary diseases. Thus, a method to automatically detect abnormal sounds in auscultation was proposed. The acoustic features of normal lung sounds for control subjects and abnormal lung sounds for patients are expressed using hidden markov models (HMMs) to distinguish between normal and abnormal lung sounds. Furthermore, abnormal sounds were detected in a noisy environment, including heart sounds, using a heart-sound model. However, the F1-score obtained in detecting abnormal respiration was low (0.8493). Moreover, the duration and acoustic properties of segments of respiratory, heart, and adventitious sounds varied. In our previous method, the appropriate HMMs for the heart and adventitious sound segments were constructed. Although the properties of the types of adventitious sounds varied, an appropriate topology for each type was not considered. In this study, appropriate HMMs for the segments of each type of adventitious sound and other segments were constructed. The F1-score was increased (0.8726) by selecting a suitable topology for each segment. The results demonstrate the effectiveness of the proposed method.

  • Umbrellalike Hierarchical Artificial Bee Colony Algorithm

    Tao ZHENG  Han ZHANG  Baohang ZHANG  Zonghui CAI  Kaiyu WANG  Yuki TODO  Shangce GAO  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/05
      Vol:
    E106-D No:3
      Page(s):
    410-418

    Many optimisation algorithms improve the algorithm from the perspective of population structure. However, most improvement methods simply add hierarchical structure to the original population structure, which fails to fundamentally change its structure. In this paper, we propose an umbrellalike hierarchical artificial bee colony algorithm (UHABC). For the first time, a historical information layer is added to the artificial bee colony algorithm (ABC), and this information layer is allowed to interact with other layers to generate information. To verify the effectiveness of the proposed algorithm, we compare it with the original artificial bee colony algorithm and five representative meta-heuristic algorithms on the IEEE CEC2017. The experimental results and statistical analysis show that the umbrellalike mechanism effectively improves the performance of ABC.

  • MARSplines-Based Soil Moisture Sensor Calibration

    Sijia LI  Long WANG  Zhongju WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    419-422

    Soil moisture sensor calibration based on the Multivariate Adaptive Regression Splines (MARSplines) model is studied in this paper. Different from the generic polynomial fitting methods, the MARSplines model is a non-parametric model, and it is able to model the complex relationship between the actual and measured soil moisture. Rao-1 algorithm is employed to tune the hyper-parameters of the calibration model and thus the performance of the proposed method is further improved. Data collected from four commercial soil moisture sensors is utilized to verify the effectiveness of the proposed method. To assess the calibration performance, the proposed model is compared with the model without using the temperature information. The numeric studies prove that it is promising to apply the proposed model for real applications.

  • GUI System to Support Cardiology Examination Based on Explainable Regression CNN for Estimating Pulmonary Artery Wedge Pressure

    Yuto OMAE  Yuki SAITO  Yohei KAKIMOTO  Daisuke FUKAMACHI  Koichi NAGASHIMA  Yasuo OKUMURA  Jun TOYOTANI  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2022/12/08
      Vol:
    E106-D No:3
      Page(s):
    423-426

    In this article, a GUI system is proposed to support clinical cardiology examinations. The proposed system estimates “pulmonary artery wedge pressure” based on patients' chest radiographs using an explainable regression-based convolutional neural network. The GUI system was validated by performing an effectiveness survey with 23 cardiology physicians with medical licenses. The results indicated that many physicians considered the GUI system to be effective.

  • Concatenated Permutation Codes under Chebyshev Distance

    Motohiro KAWASUMI  Kenta KASAI  

     
    PAPER-Coding Theory

      Pubricized:
    2022/09/21
      Vol:
    E106-A No:3
      Page(s):
    616-632

    Permutation codes are error-correcting codes over symmetric groups. We focus on permutation codes under Chebyshev (l∞) distance. A permutation code invented by Kløve et al. is of length n, size 2n-d and, minimum distance d. We denote the code by φn,d. This code is the largest known code of length n and minimum Chebyshev distance d > n/2 so far, to the best of the authors knowledge. They also devised efficient encoding and hard-decision decoding (HDD) algorithms that outperform the bounded distance decoding. In this paper, we derive a tight upper bound of decoding error probability of HDD. By factor graph formalization, we derive an efficient maximum a-posterior probability decoding algorithm for φn,d. We explore concatenating permutation codes of φn,d=0 with binary outer codes for more robust error correction. A naturally induced pseudo distance over binary outer codes successfully characterizes Chebyshev distance of concatenated permutation codes. Using this distance, we upper-bound the minimum Chebyshev distance of concatenated codes. We discover how to concatenate binary linear codes to achieve the upper bound. We derive the distance distribution of concatenated permutation codes with random outer codes. We demonstrate that the sum-product decoding performance of concatenated codes with outer low-density parity-check codes outperforms conventional schemes.

  • Device Dependent Information Hiding for Images

    Hiroshi ITO  Tadashi KASEZAWA  

     
    PAPER-Information Network

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    195-203

    A new method for hiding information in digital images is proposed. Our method differs from existing techniques in that the information is hidden in a mixture of colors carefully tuned on a specific device according to the device's signal-to-luminance (gamma) characteristics. Because these reproduction characteristics differ in general from device to device and even from model to model, the hidden information appears when the cover image is viewed on a different device, and hence the hiding property is device-dependent. To realize this, we modulated a cover image using two identically-looking checkerboard patterns and switched them locally depending on the hidden information. Reproducing these two patterns equally on a different device is difficult. A possible application of our method would be secure printing where an image is allowed to be viewed only on a screen but a warning message appears when it is printed.

  • Electromagnetic Wave Pattern Detection with Multiple Sensors in the Manufacturing Field

    Ayano OHNISHI  Michio MIYAMOTO  Yoshio TAKEUCHI  Toshiyuki MAEYAMA  Akio HASEGAWA  Hiroyuki YOKOYAMA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:2
      Page(s):
    109-116

    Multiple wireless communication systems are often operated together in the same area in such manufacturing sites as factories where wideband noise may be emitted from industrial equipment over channels for wireless communication systems. To perform highly reliable wireless communication in such environments, radio wave environments must be monitored that are specific to each manufacturing site to find channels and timing that enable stable communication. The authors studied technologies using machine learning to efficiently analyze a large amount of monitoring data, including signals whose spectrum shape is undefined, such as electromagnetic noise over a wideband. In this paper, we generated common supervised data for multiple sensors by conjointly clustering features after normalizing those calculated in each sensor to recognize the signal reception timing from identical sources and eliminate the complexity of supervised data management. We confirmed our method's effectiveness through signal models and actual data sampled by sensors that we developed.

  • Simulation Research on Low Frequency Magnetic Radiation Emission of Shipboard Equipment

    Yang XIAO  Zhongyuan ZHOU  Changping TANG  Jinjing REN  Mingjie SHENG  Zhengrui XU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/07/27
      Vol:
    E106-C No:2
      Page(s):
    41-49

    This paper first introduces the structure of a shipboard equipment control cabinet and the preliminary design of electromagnetic shielding, then introduces the principle of low-frequency magnetic field shielding, and uses silicon steel sheet to shield the low-frequency magnetic field of shipboard equipment control equipment. Based on ANSYS Maxwell simulation software, the low-frequency magnetic field radiation emission of the equipment's conducted harmonic peak frequency point is simulated. Finally, according to MIL-STD-461G test standard, the low-frequency magnetic field radiation emission test is carried out, which meets the limit requirements of the standard. The low-frequency magnetic field shielding technology has practical value. The low-frequency magnetic field radiation emission simulation based on ANSYS Maxwell proposed in this paper is a useful attempt for the quantitative simulation of radiation emission.

  • Learning Support System That Encourages Self-Directed Knowledge Discovery

    Kosuke MATSUDA  Kazuhisa SETA  Yuki HAYASHI  

     
    PAPER

      Pubricized:
    2022/10/06
      Vol:
    E106-D No:2
      Page(s):
    110-120

    Self-directed learning in an appropriately designed environment can help learners retain knowledge tied to experience and motivate them to learn more. For teachers, however, it is difficult to design an environment to give to learners and to give feedback that reflects respect for their independent efforts, while for learners, it is difficult to set learning objectives on their own and to construct knowledge correctly based on their own efforts. In this research, we developed a learning support system that provides a mechanism for constructing an observational learning environment using virtual space and that encourages self-directed knowledge discovery. We confirmed that this system contributes to a learner's structural understanding and its retention and to a greater desire to learn at a level comparable to that of concept map creation, another active learning method.

  • Virtual Reality Campuses as New Educational Metaverses

    Katashi NAGAO  

     
    INVITED PAPER

      Pubricized:
    2022/10/13
      Vol:
    E106-D No:2
      Page(s):
    93-100

    This paper focuses on the potential value and future prospects of using virtual reality (VR) technology in online education. In detailing online education and the latest VR technology, we focus on metaverse construction and artificial intelligence (AI) for educational VR use. In particular, we describe a virtual university campus in which on-demand VR lectures are conducted in virtual lecture halls, automated evaluations of student learning and training using machine learning, and the linking of multiple digital campuses.

  • Ensemble-Based Method for Correcting Global Explanation of Prediction Model

    Masaki HAMAMOTO  Hiroyuki NAMBA  Masashi EGI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/11/15
      Vol:
    E106-D No:2
      Page(s):
    218-228

    Explainable artificial intelligence (AI) technology enables us to quantitatively analyze the whole prediction logic of AI as a global explanation. However, unwanted relationships learned by AI due to data sparsity, high dimensionality, and noise are also visualized in the explanation, which deteriorates confidence in the AI. Thus, methods for correcting those unwanted relationships in explanation has been developed. However, since these methods are applicable only to differentiable machine learning (ML) models but not to non-differentiable models such as tree-based models, they are insufficient for covering a wide range of ML technology. Since these methods also require re-training of the model for correcting its explanation (i.e., in-processing method), they cannot be applied to black-box models provided by third parties. Therefore, we propose a method called ensemble-based explanation correction (EBEC) as a post-processing method for correcting the global explanation of a prediction model in a model-agnostic manner by using the Rashomon effect of statistics. We evaluated the performance of EBEC with three different tasks and analyzed its function in more detail. The evaluation results indicate that EBEC can correct global explanation of the model so that the explanation aligns with the domain knowledge given by the user while maintaining its accuracy. EBEC can be extended in various ways and combined with any method to improve correction performance since it is a post-processing-type correction method. Hence, EBEC would contribute to high-productivity ML modeling as a new type of explanation-correction method.

  • A Night Image Enhancement Algorithm Based on MDIFE-Net Curve Estimation

    Jing ZHANG  Dan LI  Hong-an LI  Xuewen LI  Lizhi ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/11/04
      Vol:
    E106-D No:2
      Page(s):
    229-239

    In order to solve the low-quality problems such as low brightness, poor contrast, noise interference and color imbalance in night images, a night image enhancement algorithm based on MDIFE-Net curve estimation is presented. This algorithm mainly consists of three parts: Firstly, we design an illumination estimation curve (IEC), which adjusts the pixel level of the low illumination image domain through a non-linear fitting function, maps to the enhanced image domain, and effectively eliminates the effect of illumination loss; Secondly, the DCE-Net is improved, replacing the original Relu activation function with a smoother Mish activation function, so that the parameters can be better updated; Finally, illumination estimation loss function, which combines image attributes with fidelity, is designed to drive the no-reference image enhancement, which preserves more image details while enhancing the night image. The experimental results show that our method can not only effectively improve the image contrast, but also make the details of the target more prominent, improve the visual quality of the image, and make the image achieve a better visual effect. Compared with four existing low illumination image enhancement algorithms, the NIQE and STD evaluation index values are better than other representative algorithms, verify the feasibility and validity of the algorithm, and verify the rationality and necessity of each component design through ablation experiments.

  • Adversarial Reinforcement Learning-Based Coordinated Robust Spatial Reuse in Broadcast-Overlaid WLANs

    Yuto KIHIRA  Yusuke KODA  Koji YAMAMOTO  Takayuki NISHIO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/08/02
      Vol:
    E106-B No:2
      Page(s):
    203-212

    Broadcast services for wireless local area networks (WLANs) are being standardized in the IEEE 802.11 task group bc. Envisaging the upcoming coexistence of broadcast access points (APs) with densely-deployed legacy APs, this paper addresses a learning-based spatial reuse with only partial receiver-awareness. This partial awareness means that the broadcast APs can leverage few acknowledgment frames (ACKs) from recipient stations (STAs). This is in view of the specific concerns of broadcast communications. In broadcast communications for a very large number of STAs, ACK implosions occur unless some STAs are stopped from responding with ACKs. Given this, the main contribution of this paper is to demonstrate the feasibility to improve the robustness of learning-based spatial reuse to hidden interferers only with the partial receiver-awareness while discarding any re-training of broadcast APs. The core idea is to leverage robust adversarial reinforcement learning (RARL), where before a hidden interferer is installed, a broadcast AP learns a rate adaptation policy in a competition with a proxy interferer that provides jamming signals intelligently. Therein, the recipient STAs experience interference and the partial STAs provide a feedback overestimating the effect of interference, allowing the broadcast AP to select a data rate to avoid frame losses in a broad range of recipient STAs. Simulations demonstrate the suppression of the throughput degradation under a sudden installation of a hidden interferer, indicating the feasibility of acquiring robustness to the hidden interferer.

521-540hit(18690hit)