The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

481-500hit(18690hit)

  • Parts Supply Support Method for Leveling Workload in In-Process Logistics

    Noriko YUASA  Masahiro YAMAGUCHI  Kosuke SHIMA  Takanobu OTSUKA  

     
    PAPER

      Pubricized:
    2022/10/20
      Vol:
    E106-D No:4
      Page(s):
    469-476

    At manufacturing sites, mass customization is expanding along with the increasing variety of customer needs. This situation leads to complications in production planning for the factory manager, and production plans are likely to change suddenly at the manufacturing site. Because such sudden fluctuations in production often occur, it is particularly difficult to optimize the parts supply operations in these production processes. As a solution to such problems, Industry 4.0 has expanded to promote the use of digital technologies at manufacturing sites; however, these solutions can be expensive and time-consuming to introduce. Therefore, not all factory managers are favorable toward introducing digital technology. In this study, we propose a method to support parts supply operations that decreases work stagnation and fluctuation without relying on the experience of workers who supply parts in the various production processes. Furthermore, we constructed a system that is inexpensive and easy to introduce using both LPWA and BLE communications. The purpose of the system is to level out work in in-process logistics. In an experiment, the proposed method was introduced to a manufacturing site, and we compared how the workload of the site's workers changed. The experimental results show that the proposed method is effective for workload leveling in parts supply operations.

  • GConvLoc: WiFi Fingerprinting-Based Indoor Localization Using Graph Convolutional Networks

    Dongdeok KIM  Young-Joo SUH  

     
    LETTER-Information Network

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:4
      Page(s):
    570-574

    We propose GConvLoc, a WiFi fingerprinting-based indoor localization method utilizing graph convolutional networks. Using the graph structure, we can consider the fingerprint data of the reference points and their location labels in addition to the fingerprint data of the test point at inference time. Experimental results show that GConvLoc outperforms baseline methods that do not utilize graphs.

  • ConvNeXt-Haze: A Fog Image Classification Algorithm for Small and Imbalanced Sample Dataset Based on Convolutional Neural Network

    Fuxiang LIU  Chen ZANG  Lei LI  Chunfeng XU  Jingmin LUO  

     
    PAPER

      Pubricized:
    2022/11/22
      Vol:
    E106-D No:4
      Page(s):
    488-494

    Aiming at the different abilities of the defogging algorithms in different fog concentrations, this paper proposes a fog image classification algorithm for a small and imbalanced sample dataset based on a convolution neural network, which can classify the fog images in advance, so as to improve the effect and adaptive ability of image defogging algorithm in fog and haze weather. In order to solve the problems of environmental interference, camera depth of field interference and uneven feature distribution in fog images, the CutBlur-Gauss data augmentation method and focal loss and label smoothing strategies are used to improve the accuracy of classification. It is compared with the machine learning algorithm SVM and classical convolution neural network classification algorithms alexnet, resnet34, resnet50 and resnet101. This algorithm achieves 94.5% classification accuracy on the dataset in this paper, which exceeds other excellent comparison algorithms at present, and achieves the best accuracy. It is proved that the improved algorithm has better classification accuracy.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • PR-Trie: A Hybrid Trie with Ant Colony Optimization Based Prefix Partitioning for Memory-Efficient IPv4/IPv6 Route Lookup

    Yi ZHANG  Lufeng QIAO  Huali WANG  

     
    PAPER-Computer System

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:4
      Page(s):
    509-522

    Memory-efficient Internet Protocol (IP) lookup with high speed is essential to achieve link-speed packet forwarding in IP routers. The rapid growth of Internet traffic and the development of optical link technologies have made IP lookup a major performance bottleneck in core routers. In this paper, we propose a new IP route lookup architecture based on hardware called Prefix-Route Trie (PR-Trie), which supports both IPv4 and IPv6 addresses. In PR-Trie, we develop a novel structure called Overlapping Hybrid Trie (OHT) to perform fast longest-prefix-matching (LPM) based on Multibit-Trie (MT), and a hash-based level matching query used to achieve only one off-chip memory access per lookup. In addition, the proposed PR-Trie also supports fast incremental updates. Since the memory complexity in MT-based IP lookup schemes depends on the level-partitioning solution and the data structure used, we develop an optimization algorithm called Bitmap-based Prefix Partitioning Optimization (BP2O). The proposed BP2O is based on a heuristic search using Ant Colony Optimization (ACO) algorithms to optimize memory efficiency. Experimental results using real-life routing tables prove that our proposal has superior memory efficiency. Theoretical performance analyses show that PR-Trie outperforms the classical Trie-based IP lookup algorithms.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • Speech Recognition for Air Traffic Control via Feature Learning and End-to-End Training

    Peng FAN  Xiyao HUA  Yi LIN  Bo YANG  Jianwei ZHANG  Wenyi GE  Dongyue GUO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    538-544

    In this work, we propose a new automatic speech recognition (ASR) system based on feature learning and an end-to-end training procedure for air traffic control (ATC) systems. The proposed model integrates the feature learning block, recurrent neural network (RNN), and connectionist temporal classification loss to build an end-to-end ASR model. Facing the complex environments of ATC speech, instead of the handcrafted features, a learning block is designed to extract informative features from raw waveforms for acoustic modeling. Both the SincNet and 1D convolution blocks are applied to process the raw waveforms, whose outputs are concatenated to the RNN layers for the temporal modeling. Thanks to the ability to learn representations from raw waveforms, the proposed model can be optimized in a complete end-to-end manner, i.e., from waveform to text. Finally, the multilingual issue in the ATC domain is also considered to achieve the ASR task by constructing a combined vocabulary of Chinese characters and English letters. The proposed approach is validated on a multilingual real-world corpus (ATCSpeech), and the experimental results demonstrate that the proposed approach outperforms other baselines, achieving a 6.9% character error rate.

  • APVAS: Reducing the Memory Requirement of AS_PATH Validation by Introducing Aggregate Signatures into BGPsec

    Ouyang JUNJIE  Naoto YANAI  Tatsuya TAKEMURA  Masayuki OKADA  Shingo OKAMURA  Jason Paul CRUZ  

     
    PAPER

      Pubricized:
    2023/01/11
      Vol:
    E106-A No:3
      Page(s):
    170-184

    The BGPsec protocol, which is an extension of the border gateway protocol (BGP) for Internet routing known as BGPsec, uses digital signatures to guarantee the validity of routing information. However, the use of digital signatures in routing information on BGPsec causes a lack of memory in BGP routers, creating a gaping security hole in today's Internet. This problem hinders the practical realization and implementation of BGPsec. In this paper, we present APVAS (AS path validation based on aggregate signatures), a new protocol that reduces the memory consumption of routers running BGPsec when validating paths in routing information. APVAS relies on a novel aggregate signature scheme that compresses individually generated signatures into a single signature. Furthermore, we implement a prototype of APVAS on BIRD Internet Routing Daemon and demonstrate its efficiency on actual BGP connections. Our results show that the routing tables of the routers running BGPsec with APVAS have 20% lower memory consumption than those running the conventional BGPsec. We also confirm the effectiveness of APVAS in the real world by using 800,000 routes, which are equivalent to the full route information on a global scale.

  • Multiparallel MMT: Faster ISD Algorithm Solving High-Dimensional Syndrome Decoding Problem

    Shintaro NARISADA  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    241-252

    The hardness of the syndrome decoding problem (SDP) is the primary evidence for the security of code-based cryptosystems, which are one of the finalists in a project to standardize post-quantum cryptography conducted by the U.S. National Institute of Standards and Technology (NIST-PQC). Information set decoding (ISD) is a general term for algorithms that solve SDP efficiently. In this paper, we conducted a concrete analysis of the time complexity of the latest ISD algorithms under the limitation of memory using the syndrome decoding estimator proposed by Esser et al. As a result, we present that theoretically nonoptimal ISDs, such as May-Meurer-Thomae (MMT) and May-Ozerov, have lower time complexity than other ISDs in some actual SDP instances. Based on these facts, we further studied the possibility of multiple parallelization for these ISDs and proposed the first GPU algorithm for MMT, the multiparallel MMT algorithm. In the experiments, we show that the multiparallel MMT algorithm is faster than existing ISD algorithms. In addition, we report the first successful attempts to solve the 510-, 530-, 540- and 550-dimensional SDP instances in the Decoding Challenge contest using the multiparallel MMT.

  • Linear Algebraic Approach to Strongly Secure Ramp Secret Sharing for General Access Structures with Application to Symmetric PIR

    Reo ERIGUCHI  Noboru KUNIHIRO  Koji NUIDA  

     
    PAPER

      Pubricized:
    2022/09/13
      Vol:
    E106-A No:3
      Page(s):
    263-271

    Ramp secret sharing is a variant of secret sharing which can achieve better information ratio than perfect schemes by allowing some partial information on a secret to leak out. Strongly secure ramp schemes can control the amount of leaked information on the components of a secret. In this paper, we reduce the construction of strongly secure ramp secret sharing for general access structures to a linear algebraic problem. As a result, we show that previous results on strongly secure network coding imply two linear transformation methods to make a given linear ramp scheme strongly secure. They are explicit or provide a deterministic algorithm while the previous methods which work for any linear ramp scheme are non-constructive. In addition, we present a novel application of strongly secure ramp schemes to symmetric PIR in a multi-user setting. Our solution is advantageous over those based on a non-strongly secure scheme in that it reduces the amount of communication between users and servers and also the amount of correlated randomness that servers generate in the setup.

  • A Computationally Efficient Card-Based Majority Voting Protocol with Fewer Cards in the Private Model

    Yoshiki ABE  Takeshi NAKAI  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER

      Pubricized:
    2022/10/20
      Vol:
    E106-A No:3
      Page(s):
    315-324

    Card-based cryptography realizes secure multiparty computation using physical cards. In 2018, Watanabe et al. proposed a card-based three-input majority voting protocol using three cards. In a card-based cryptographic protocol with n-bit inputs, it is known that a protocol using shuffles requires at least 2n cards. In contrast, as Watanabe et al.'s protocol, a protocol using private permutations can be constructed with fewer cards than the lower bounds above. Moreover, an n-input protocol using private permutations would not even require n cards in principle since a private permutation depending on an input can represent the input without using additional cards. However, there are only a few protocols with fewer than n cards. Recently, Abe et al. extended Watanabe et al.'s protocol and proposed an n-input majority voting protocol with n cards and n + ⌊n/2⌋ + 1 private permutations. This paper proposes an n-input majority voting protocol with ⌈n/2⌉ + 1 cards and 2n-1 private permutations, which is also obtained by extending Watanabe et al.'s protocol. Compared with Abe et al.'s protocol, although the number of private permutations increases by about n/2, the number of cards is reduced by about n/2. In addition, unlike Abe et al.'s protocol, our protocol includes Watanabe et al.'s protocol as a special case where n=3.

  • On the Limitations of Computational Fuzzy Extractors

    Kenji YASUNAGA  Kosuke YUZAWA  

     
    LETTER

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:3
      Page(s):
    350-354

    We present a negative result of fuzzy extractors with computational security. Specifically, we show that, under a computational condition, a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker parameters. Our result implies that to circumvent the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that are not invertible by non-lossy functions.

  • Packer Identification Method for Multi-Layer Executables Using Entropy Analysis with k-Nearest Neighbor Algorithm

    Ryoto OMACHI  Yasuyuki MURAKAMI  

     
    LETTER

      Pubricized:
    2022/08/16
      Vol:
    E106-A No:3
      Page(s):
    355-357

    The damage cost caused by malware has been increasing in the world. Usually, malwares are packed so that it is not detected. It is a hard task even for professional malware analysts to identify the packers especially when the malwares are multi-layer packed. In this letter, we propose a method to identify the packers for multi-layer packed malwares by using k-nearest neighbor algorithm with entropy-analysis for the malwares.

  • Multi Deletion/Substitution/Erasure Error-Correcting Codes for Information in Array Design

    Manabu HAGIWARA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2022/09/21
      Vol:
    E106-A No:3
      Page(s):
    368-374

    This paper considers error-correction for information in array design, i.e., two-dimensional design such as QR-codes. The error model is multi deletion/substitution/erasure errors. Code construction for the errors and an application of the code are provided. The decoding technique uses an error-locator for deletion codes.

  • Biometric Identification Systems with Both Chosen and Generated Secret Keys by Allowing Correlation

    Vamoua YACHONGKA  Hideki YAGI  

     
    PAPER-Shannon Theory

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    382-393

    We propose a biometric identification system where the chosen- and generated-secret keys are used simultaneously, and investigate its fundamental limits from information theoretic perspectives. The system consists of two phases: enrollment and identification phases. In the enrollment phase, for each user, the encoder uses a secret key, which is chosen independently, and the biometric identifier to generate another secret key and a helper data. In the identification phase, observing the biometric sequence of the identified user, the decoder estimates index, chosen- and generated-secret keys of the identified user based on the helper data stored in the system database. In this study, the capacity region of such system is characterized. In the problem settings, we allow chosen- and generated-secret keys to be correlated. As a result, by permitting the correlation of the two secret keys, the sum rate of the identification, chosen- and generated-secret key rates can achieve a larger value compared to the case where the keys do not correlate. Moreover, the minimum amount of the storage rate changes in accordance with both the identification and chosen-secret key rates, but that of the privacy-leakage rate depends only on the identification rate.

  • Multi-Designated Receiver Authentication Codes: Models and Constructions

    Yohei WATANABE  Takenobu SEITO  Junji SHIKATA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:3
      Page(s):
    394-405

    An authentication code (A-code) is a two-party message authentication code in the information-theoretic security setting. One of the variants of A-codes is a multi-receiver authentication code (MRA-code), where there are a single sender and multiple receivers and the sender can create a single authenticator so that all receivers accepts it unless it is maliciously modified. In this paper, we introduce a multi-designated receiver authentication code (MDRA-code) with information-theoretic security as an extension of MRA-codes. The purpose of MDRA-codes is to securely transmit a message via a broadcast channel from a single sender to an arbitrary subset of multiple receivers that have been designated by the sender, and only the receivers in the subset (i.e., not all receivers) should accept the message if an adversary is absent. This paper proposes a model and security formalization of MDRA-codes, and provides constructions of MDRA-codes.

  • Information Leakage Through Passive Timing Attacks on RSA Decryption System

    Tomonori HIRATA  Yuichi KAJI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/08/16
      Vol:
    E106-A No:3
      Page(s):
    406-413

    A side channel attack is a means of security attacks that tries to restore secret information by analyzing side-information such as electromagnetic wave, heat, electric energy and running time that are unintentionally emitted from a computer system. The side channel attack that focuses on the running time of a cryptosystem is specifically named a “timing attack”. Timing attacks are relatively easy to carry out, and particularly threatening for tiny systems that are used in smart cards and IoT devices because the system is so simple that the processing time would be clearly observed from the outside of the card/device. The threat of timing attacks is especially serious when an attacker actively controls the input to a target program. Countermeasures are studied to deter such active attacks, but the attacker still has the chance to learn something about the concealed information by passively watching the running time of the target program. The risk of passive timing attacks can be measured by the mutual information between the concealed information and the running time. However, the computation of the mutual information is hardly possible except for toy examples. This study focuses on three algorithms for RSA decryption, derives formulas of the mutual information under several assumptions and approximations, and calculates the mutual information numerically for practical security parameters.

  • Asymptotic Evaluation of Classification in the Presence of Label Noise

    Goki YASUDA  Tota SUKO  Manabu KOBAYASHI  Toshiyasu MATSUSHIMA  

     
    PAPER-Learning

      Pubricized:
    2022/08/26
      Vol:
    E106-A No:3
      Page(s):
    422-430

    In a practical classification problem, there are cases where incorrect labels are included in training data due to label noise. We introduce a classification method in the presence of label noise that idealizes a classification method based on the expectation-maximization (EM) algorithm, and evaluate its performance theoretically. Its performance is asymptotically evaluated by assessing the risk function defined as the Kullback-Leibler divergence between predictive distribution and true distribution. The result of this performance evaluation enables a theoretical evaluation of the most successful performance that the EM-based classification method may achieve.

  • Enumeration of Both-Ends-Fixed k-Ary Necklaces and Its Applications

    Hiroshi FUJISAKI  

     
    PAPER-Fundamentals of Information Theory

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:3
      Page(s):
    431-439

    We consider both-ends-fixed k-ary necklaces and enumerate all such necklaces of length n from the viewpoints of symbolic dynamics and β-expansions, where n and k(≥ 2) are natural numbers and β(> 1) is a real number. Recently, Sawada et al. proposed an efficient construction of k-ary de Bruijn sequence of length kn, which for each n ≥ 1, requires O(n) space but generates a single k-ary de Bruijn sequence of length kn in O(1)-amortized time per bit. Based on the enumeration of both-ends-fixed k-ary necklaces of length n, we evaluate auto-correlation values of the k-ary de Bruijn sequences of length kn constructed by Sawada et al. We also estimate the asymptotic behaviour of the obtained auto-correlation values as n tends to infinity.

  • Combinatorial Structures Behind Binary Generalized NTU Sequences

    Xiao-Nan LU  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/06/15
      Vol:
    E106-A No:3
      Page(s):
    440-444

    This paper concentrates on a class of pseudorandom sequences generated by combining q-ary m-sequences and quadratic characters over a finite field of odd order, called binary generalized NTU sequences. It is shown that the relationship among the sub-sequences of binary generalized NTU sequences can be formulated as combinatorial structures called Hadamard designs. As a consequence, the combinatorial structures generalize the group structure discovered by Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, pp.1659-1667, 2019) and lead to a finite-geometric explanation for the investigated group structure.

481-500hit(18690hit)