The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

361-380hit(18690hit)

  • Demonstration of Chaos-Based Radio Encryption Modulation Scheme through Wired Transmission Experiments Open Access

    Kenya TOMITA  Mamoru OKUMURA  Eiji OKAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/25
      Vol:
    E106-B No:8
      Page(s):
    686-695

    With the recent commercialization of fifth-generation mobile communication systems (5G), wireless communications are being used in various fields. Accordingly, the number of situations in which sensitive information, such as personal data is handled in wireless communications is increasing, and so is the demand for confidentiality. To meet this demand, we proposed a chaos-based radio-encryption modulation that combines physical layer confidentiality and channel coding effects, and we have demonstrated its effectiveness through computer simulations. However, there are no demonstrations of performances using real signals. In this study, we constructed a transmission system using Universal Software Radio Peripheral, a type of software-defined radio, and its control software LabVIEW. We conducted wired transmission experiments for the practical use of radio-frequency encrypted modulation. The results showed that a gain of 0.45dB at a bit error rate of 10-3 was obtained for binary phase-shift keying, which has the same transmission efficiency as the proposed method under an additive white Gaussian noise channel. Similarly, a gain of 10dB was obtained under fading conditions. We also evaluated the security ability and demonstrated that chaos modulation has both information-theoretic security and computational security.

  • Motion Parameter Estimation Based on Overlapping Elements for TDM-MIMO FMCW Radar

    Feng TIAN  Wan LIU  Weibo FU  Xiaojun HUANG  

     
    PAPER-Sensing

      Pubricized:
    2023/02/06
      Vol:
    E106-B No:8
      Page(s):
    705-713

    Intelligent traffic monitoring provides information support for autonomous driving, which is widely used in intelligent transportation systems (ITSs). A method for estimating vehicle moving target parameters based on millimeter-wave radars is proposed to solve the problem of low detection accuracy due to velocity ambiguity and Doppler-angle coupling in the process of traffic monitoring. First of all, a MIMO antenna array with overlapping elements is constructed by introducing them into the typical design of MIMO radar array antennas. The motion-induced phase errors are eliminated by the phase difference among the overlapping elements. Then, the position errors among them are corrected through an iterative method, and the angle of multiple targets is estimated. Finally, velocity disambiguation is performed by adopting the error-corrected phase difference among the overlapping elements. An accurate estimation of vehicle moving target angle and velocity is achieved. Through Monte Carlo simulation experiments, the angle error is 0.1° and the velocity error is 0.1m/s. The simulation results show that the method can be used to effectively solve the problems related to velocity ambiguity and Doppler-angle coupling, meanwhile the accuracy of velocity and angle estimation can be improved. An improved algorithm is tested on the vehicle datasets that are gathered in the forward direction of ordinary public scenes of a city. The experimental results further verify the feasibility of the method, which meets the real-time and accuracy requirements of ITSs on vehicle information monitoring.

  • A Cause of Momentary Level Shifts Appearing in Broadcast Satellite Signals Open Access

    Ryouichi NISHIMURA  Byeongpyo JEONG  Hajime SUSUKITA  Takashi TAKAHASHI  Kenichi TAKIZAWA  

     
    PAPER-Sensing

      Pubricized:
    2023/02/24
      Vol:
    E106-B No:8
      Page(s):
    714-722

    The degree of reception of BS signals is affected by various factors. After routinely recording it at two observation points at two locations, we found that momentary upward and downward level shifts occurred multiple times, mainly during daytime. These level shifts were observed at one location. No such signal was sensed at the other location. After producing an algorithm to extract such momemtary level shifts, their statistical properties were investigated. Careful analyses, including assessment of the signal polarity, amplitude, duration, hours, and comparison with actual flight schedules and route information implied that these level shifts are attributable to the interference of direct and reflected waves from aircraft flying at approximately tropopause altitude. This assumption is further validated through computer simulations of BS signal interference.

  • Information Recovery for Signals Intercepted by Dual-Channel Nyquist Folding Receiver with Adjustable Local Oscillator

    Xinqun LIU  Tao LI  Yingxiao ZHAO  Jinlin PENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    446-449

    Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.

  • EMRNet: Efficient Modulation Recognition Networks for Continuous-Wave Radar Signals

    Kuiyu CHEN  Jingyi ZHANG  Shuning ZHANG  Si CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    450-453

    Automatic modulation recognition(AMR) of radar signals is a currently active area, especially in electronic reconnaissance, where systems need to quickly identify the intercepted signal and formulate corresponding interference measures on computationally limited platforms. However, previous methods generally have high computational complexity and considerable network parameters, making the system unable to detect the signal timely in resource-constrained environments. This letter firstly proposes an efficient modulation recognition network(EMRNet) with tiny and low latency models to match the requirements for mobile reconnaissance equipments. One-dimensional residual depthwise separable convolutions block(1D-RDSB) with an adaptive size of receptive fields is developed in EMRNet to replace the traditional convolution block. With 1D-RDSB, EMRNet achieves a high classification accuracy and dramatically reduces computation cost and network paraments. The experiment results show that EMRNet can achieve higher precision than existing 2D-CNN methods, while the computational cost and parament amount of EMRNet are reduced by about 13.93× and 80.88×, respectively.

  • Multi-Target Recognition Utilizing Micro-Doppler Signatures with Limited Supervision

    Jingyi ZHANG  Kuiyu CHEN  Yue MA  

     
    BRIEF PAPER-Electronic Instrumentation and Control

      Pubricized:
    2023/03/06
      Vol:
    E106-C No:8
      Page(s):
    454-457

    Previously, convolutional neural networks have made tremendous progress in target recognition based on micro-Doppler radar. However, these studies only considered the presence of one target at a time in the surveillance area. Simultaneous multi-targets recognition for surveillance radar remains a pretty challenging issue. To alleviate this issue, this letter develops a multi-instance multi-label (MIML) learning strategy, which can automatically locate the crucial input patterns that trigger the labels. Benefitting from its powerful target-label relation discovery ability, the proposed framework can be trained with limited supervision. We emphasize that only echoes from single targets are involved in training data, avoiding the preparation and annotation of multi-targets echo in the training stage. To verify the validity of the proposed method, we model two representative ground moving targets, i.e., person and wheeled vehicles, and carry out numerous comparative experiments. The result demonstrates that the developed framework can simultaneously recognize multiple targets and is also robust to variation of the signal-to-noise ratio (SNR), the initial position of targets, and the difference in scattering coefficient.

  • Digital Rights Management System of Media Convergence Center Based on Ethereum and IPFS

    Runde YU  Zhuowen LI  Zhe CHEN  Gangyi DING  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1275-1282

    In order to solve the problems of copyrights infringement, high cost and complex process of rights protection in current media convergence center, a digital rights management system based on blockchain technology and IPFS (Inter Planetary File System) technology is proposed. Considering that large files such as video and audio cannot be stored on the blockchain directly, IPFS technology is adopted as the data expansion scheme for the data storage layer of the Ethereum platform, IPFS protocol is further used for distributed data storage and transmission of media content. In addition, smart contract is also used to uniquely identify digital rights through NFT (Non-fungible Tokens), which provides the characteristics of digital rights transferability and traceability, and realizes an open, transparent, tamper-proof and traceable digital rights management system for media convergence center. Several experimental results show that it has higher transaction success rate, lower storage consumption and transaction confirmation delay than existing scheme.

  • Distilling Distribution Knowledge in Normalizing Flow

    Jungwoo KWON  Gyeonghwan KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/04/26
      Vol:
    E106-D No:8
      Page(s):
    1287-1291

    In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how configuration of the distillation positions impacts on the knowledge transfer performance. To evaluate the proposed ideas, we choose two knowledge distillation baseline models which are based on Normalizing flow on different domains: CS-Flow for anomaly detection and SRFlow-DA for super-resolution. A set of performance comparison to the baseline models with popular benchmark datasets shows promising results along with improved inference speed. The comparison includes performance analysis based on various configurations of the distillation positions in the proposed scheme.

  • Deep Multiplicative Update Algorithm for Nonnegative Matrix Factorization and Its Application to Audio Signals

    Hiroki TANJI  Takahiro MURAKAMI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/01/19
      Vol:
    E106-A No:7
      Page(s):
    962-975

    The design and adjustment of the divergence in audio applications using nonnegative matrix factorization (NMF) is still open problem. In this study, to deal with this problem, we explore a representation of the divergence using neural networks (NNs). Instead of the divergence, our approach extends the multiplicative update algorithm (MUA), which estimates the NMF parameters, using NNs. The design of the extended MUA incorporates NNs, and the new algorithm is referred to as the deep MUA (DeMUA) for NMF. While the DeMUA represents the algorithm for the NMF, interestingly, the divergence is obtained from the incorporated NN. In addition, we propose theoretical guides to design the incorporated NN such that it can be interpreted as a divergence. By appropriately designing the NN, MUAs based on existing divergences with a single hyper-parameter can be represented by the DeMUA. To train the DeMUA, we applied it to audio denoising and supervised signal separation. Our experimental results show that the proposed architecture can learn the MUA and the divergences in sparse denoising and speech separation tasks and that the MUA based on generalized divergences with multiple parameters shows favorable performances on these tasks.

  • Variable Ordering in Binary Decision Diagram Using Spider Monkey Optimization for Node and Path Length Optimization

    Mohammed BALAL SIDDIQUI  Mirza TARIQ BEG  Syed NASEEM AHMAD  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    976-989

    Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.

  • Simultaneous Visible Light Communication and Ranging Using High-Speed Stereo Cameras Based on Bicubic Interpolation Considering Multi-Level Pulse-Width Modulation

    Ruiyi HUANG  Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Koji KAMAKURA  Shintaro ARAI  Tomohiro YENDO  Toshiaki FUJII  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/12/26
      Vol:
    E106-A No:7
      Page(s):
    990-997

    Visible light communication (VLC) and visible light ranging are applicable techniques for intelligent transportation systems (ITS). They use every unique light-emitting diode (LED) on roads for data transmission and range estimation. The simultaneous VLC and ranging can be applied to improve the performance of both. It is necessary to achieve rapid data rate and high-accuracy ranging when transmitting VLC data and estimating the range simultaneously. We use the signal modulation method of pulse-width modulation (PWM) to increase the data rate. However, when using PWM for VLC data transmission, images of the LED transmitters are captured at different luminance levels and are easily saturated, and LED saturation leads to inaccurate range estimation. In this paper, we establish a novel simultaneous visible light communication and ranging system for ITS using PWM. Here, we analyze the LED saturation problems and apply bicubic interpolation to solve the LED saturation problem and thus, improve the communication and ranging performance. Simultaneous communication and ranging are enabled using a stereo camera. Communication is realized using maximal-ratio combining (MRC) while ranging is achieved using phase-only correlation (POC) and sinc function approximation. Furthermore, we measured the performance of our proposed system using a field trial experiment. The results show that error-free performance can be achieved up to a communication distance of 55 m and the range estimation errors are below 0.5m within 60m.

  • Ultrasonic Measurement of the Thin Oil-Slick Thickness Based on the Compressed Sensing Method

    Di YAO  Qifeng ZHANG  Qiyan TIAN  Hualong DU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/01/17
      Vol:
    E106-A No:7
      Page(s):
    998-1001

    A super-resolution algorithm is proposed to solve the problem of measuring the thin thickness of oil slick using compressed sensing theory. First, a mathematical model of a single pulse underwater ultrasonic echo is established. Then, the estimation model of the transmit time of flight (TOF) of ultrasonic echo within oil slick is given based on the sparsity of echo signals. At last, the super-resolution TOF value can be obtained by solving the sparse convex optimization problem. Simulations and experiments are conducted to validate the performance of the proposed method.

  • Persymmetric Structured Covariance Matrix Estimation Based on Whitening for Airborne STAP

    Quanxin MA  Xiaolin DU  Jianbo LI  Yang JING  Yuqing CHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/12/27
      Vol:
    E106-A No:7
      Page(s):
    1002-1006

    The estimation problem of structured clutter covariance matrix (CCM) in space-time adaptive processing (STAP) for airborne radar systems is studied in this letter. By employing the prior knowledge and the persymmetric covariance structure, a new estimation algorithm is proposed based on the whitening ability of the covariance matrix. The proposed algorithm is robust to prior knowledge of different accuracy, and can whiten the observed interference data to obtain the optimal solution. In addition, the extended factored approach (EFA) is used in the optimization for dimensionality reduction, which reduces the computational burden. Simulation results show that the proposed algorithm can effectively improve STAP performance even under the condition of some errors in prior knowledge.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

  • Toward Predictive Modeling of Solar Power Generation for Multiple Power Plants Open Access

    Kundjanasith THONGLEK  Kohei ICHIKAWA  Keichi TAKAHASHI  Chawanat NAKASAN  Kazufumi YUASA  Tadatoshi BABASAKI  Hajimu IIDA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2022/12/22
      Vol:
    E106-B No:7
      Page(s):
    547-556

    Solar power is the most widely used renewable energy source, which reduces pollution consequences from using conventional fossil fuels. However, supplying stable power from solar power generation remains challenging because it is difficult to forecast power generation. Accurate prediction of solar power generation would allow effective control of the amount of electricity stored in batteries, leading in a stable supply of electricity. Although the number of power plants is increasing, building a solar power prediction model for a newly constructed power plant usually requires collecting a new training dataset for the new power plant, which takes time to collect a sufficient amount of data. This paper aims to develop a highly accurate solar power prediction model for multiple power plants available for both new and existing power plants. The proposed method trains the model on existing multiple power plants to generate a general prediction model, and then uses it for a new power plant while waiting for the data to be collected. In addition, the proposed method tunes the general prediction model on the newly collected dataset and improves the accuracy for the new power plant. We evaluated the proposed method on 55 power plants in Japan with the dataset collected for two and a half years. As a result, the pre-trained models of our proposed method significantly reduces the average RMSE of the baseline method by 73.19%. This indicates that the model can generalize over multiple power plants, and training using datasets from other power plants is effective in reducing the RMSE. Fine-tuning the pre-trained model further reduces the RMSE by 8.12%.

  • Sum Rate Maximization for Cooperative NOMA System with IQ Imbalance

    Xiaoyu WAN  Yu WANG  Zhengqiang WANG  Zifu FAN  Bin DUO  

     
    PAPER-Network

      Pubricized:
    2023/01/17
      Vol:
    E106-B No:7
      Page(s):
    571-577

    In this paper, we investigate the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) system under in-phase and quadrature-phase (IQ) imbalance at the base station (BS) and destination. The BS communicates with users by a half-duplex amplified-and-forward (HD-AF) relay under imperfect IQ imbalance. The sum rate maximization problem is formulated as a non-convex optimization with the quality of service (QoS) constraint for each user. We first use the variable substitution method to transform the non-convex SR maximization problem into an equivalent problem. Then, a joint power and rate allocation algorithm is proposed based on successive convex approximation (SCA) to maximize the SR of the systems. Simulation results verify that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • Access Point Selection Algorithm Based on Coevolution Particle Swarm in Cell-Free Massive MIMO Systems

    Hengzhong ZHI  Haibin WAN  Tuanfa QIN  Zhengqiang WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    578-585

    In this paper, we investigate the Access Point (AP) selection problem in Cell-Free Massive multiple-input multiple-output (MIMO) system. Firstly, we add a connecting coefficient to the uplink data transmission model. Then, the problem of AP selection is formulated as a discrete combinatorial optimization problem which can be dealt with by the particle swarm algorithm. However, when the number of optimization variables is large, the search efficiency of the traditional particle swarm algorithm will be significantly reduced. Then, we propose an ‘user-centric’ cooperative coevolution scheme which includes the proposed probability-based particle evolution strategy and random-sampling-based particle evaluation mechanism to deal with the search efficiency problem. Simulation results show that proposed algorithm has better performance than other existing algorithms.

  • UE Set Selection for RR Scheduling in Distributed Antenna Transmission with Reinforcement Learning Open Access

    Go OTSURU  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    586-594

    In this paper, user set selection in the allocation sequences of round-robin (RR) scheduling for distributed antenna transmission with block diagonalization (BD) pre-coding is proposed. In prior research, the initial phase selection of user equipment allocation sequences in RR scheduling has been investigated. The performance of the proposed RR scheduling is inferior to that of proportional fair (PF) scheduling under severe intra-cell interference. In this paper, the multi-input multi-output technology with BD pre-coding is applied. Furthermore, the user equipment (UE) sets in the allocation sequences are eliminated with reinforcement learning. After the modification of a RR allocation sequence, no estimated throughput calculation for UE set selection is required. Numerical results obtained through computer simulation show that the maximum selection, one of the criteria for initial phase selection, outperforms the weighted PF scheduling in a restricted realm in terms of the computational complexity, fairness, and throughput.

  • Compensation of Transmitter Memory Nonlinearity by Post-Reception Blind Nonlinear Compensator with FDE Open Access

    Yasushi YAMAO  Tetsuki TANIGUCHI  Hiroki ITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/11
      Vol:
    E106-B No:7
      Page(s):
    595-602

    High-accuracy wideband signal transmission is essential for 5G and Beyond wireless communication systems. Memory nonlinearity in transmitters is a serious issue for the goal, because it deteriorates the quality of signal and lowers the system performance. This paper studies a post-reception nonlinear compensation (PRC) schemes consisting of frequency domain equalizers (FDEs) and a blind nonlinear compensator (BNLC). A frequency-domain memory nonlinearity modeling approach is employed, and several PRC configurations with FDEs and BNLC are evaluated through computer simulations. It is concluded that the proposed PRC schemes can effectively compensate memory nonlinearity in wideband transmitters via frequency-selective propagation channel. By implementing the PRC in a base station, uplink performance will be enhanced without any additional cost and power consumption in user terminals.

  • Design of Circuits and Packaging Systems for Security Chips Open Access

    Makoto NAGATA  

     
    INVITED PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:7
      Page(s):
    345-351

    Hardware oriented security and trust of semiconductor integrated circuit (IC) chips have been highly demanded. This paper outlines the requirements and recent developments in circuits and packaging systems of IC chips for security applications, with the particular emphasis on protections against physical implementation attacks. Power side channels are of undesired presence to crypto circuits once a crypto algorithm is implemented in Silicon, over power delivery networks (PDNs) on the frontside of a chip or even through the backside of a Si substrate, in the form of power voltage variation and electromagnetic wave emanation. Preventive measures have been exploited with circuit design and packaging technologies, and partly demonstrated with Si test vehicles.

361-380hit(18690hit)