The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

5381-5400hit(18690hit)

  • On Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback via Matrix Inequality Approach

    Min-Sung KOO  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    2034-2038

    In this letter, we consider the global exponential stabilization problem by output feedback for a class of nonlinear systems. Along with a newly proposed matrix inequality condition, the proposed control method has improved flexibility in dealing with nonlinearity, over the existing methods. Analysis and examples are given to illustrate the improved features of our control method.

  • Quantum Steganography with High Efficiency with Noisy Depolarizing Channels

    Xin LIAO  Qiaoyan WEN  Tingting SONG  Jie ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:10
      Page(s):
    2039-2044

    Quantum steganography is to send secret quantum information through a quantum channel, such that an unauthorized user will not be aware of the existence of secret data. The depolarizing channel can hide quantum information by disguising it as channel errors of a quantum error-correcting code. We improve the efficiency of quantum steganography with noisy depolarizing channels, by modifying the twirling procedure and adding quantum teleportation. The proposed scheme not only meets the requirements of quantum steganography but also has higher efficiency.

  • Direct Approximation of Quadratic Mutual Information and Its Application to Dependence-Maximization Clustering

    Janya SAINUI  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:10
      Page(s):
    2282-2285

    Mutual information (MI) is a standard measure of statistical dependence of random variables. However, due to the log function and the ratio of probability densities included in MI, it is sensitive to outliers. On the other hand, the L2-distance variant of MI called quadratic MI (QMI) tends to be robust against outliers because QMI is just the integral of the squared difference between the joint density and the product of marginals. In this paper, we propose a kernel least-squares QMI estimator called least-squares QMI (LSQMI) that directly estimates the density difference without estimating each density. A notable advantage of LSQMI is that its solution can be analytically and efficiently computed just by solving a system of linear equations. We then apply LSQMI to dependence-maximization clustering, and demonstrate its usefulness experimentally.

  • A Calibrationless Si-CMOS 5-bit Baseband Phase Shifter Using a Fixed-Gain-Amplifier Matrix

    Tuan Thanh TA  Shoichi TANIFUJI  Suguru KAMEDA  Noriharu SUEMATSU  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:10
      Page(s):
    1322-1329

    In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.

  • Evaluation of Interference between Parallel 120-GHz-Band Wireless Link Systems with High-Gain Cassegrain Antennas

    Jun TAKEUCHI  Akihiko HIRATA  Hiroyuki TAKAHASHI  Naoya KUKUTSU  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1294-1300

    This paper investigates space and polarization multiplexing for multichannel transmission in a 120-GHz band wireless link system. The 120-GHz-band wireless equipment employs Cassegrain antennas with a gain of about 49dBi and cross-polar discrimination of 23dB. When each of two 120-GHz wireless links transmits a 10-Gbit/s data signal in the same direction over a distance of 800m, a bit error rate (BER) of below 10-12 is obtained when the receivers are set 30m apart. When forward error correction and polarization multiplexing are used for each wireless link, we can set two wireless links within 1m of each other and obtain a BER below 10-12. Moreover, we have experimentally shown that the rain attenuation of V- and H-polarization 120-GHz-band signal is almost the same.

  • Analytic and Numerical Modeling of Normal Penetration of Early-Time (E1) High Altitude Electromagnetic Pulse (HEMP) into Dispersive Underground Multilayer Structures

    Hee-Do KANG  Il-Young OH  Tong-Ho CHUNG  Jong-Gwan YOOK  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:10
      Page(s):
    2625-2632

    In this paper, penetration phenomenon of an early-time (E1) high altitude electromagnetic pulse (HEMP) into dispersive underground multilayer structures is analyzed using electromagnetic modeling of wave propagation in frequency dependent lossy media. The electromagnetic pulse is dealt with in the power spectrum ranging from 100kHz to the 100MHz band, considering the fact that the power spectrum of the E1 HEMP rapidly decreases 30dB below its maximum value beyond the 100MHz band. In addition, the propagation channel consisting of several dielectric materials is modeled with the dispersive relative permittivity of each medium. Based on source and channel models, the propagation phenomenon is analyzed in the frequency and time domains. The attenuation levels at a 100m underground point are observed to be about 15 and 20dB at 100kHz and 1MHz, respectively, and the peak level of the penetrating electric field is found 5.6kV/m. To ensure the causality of the result, we utilize the Hilbert transform.

  • Learning a Saliency Map for Fixation Prediction

    Linfeng XU  Liaoyuan ZENG  Zhengning WANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:10
      Page(s):
    2294-2297

    In this letter, we use the saliency maps obtained by several bottom-up methods to learn a model to generate a bottom-up saliency map. In order to consider top-down image semantics, we use the high-level features of objectness and background probability to learn a top-down saliency map. The bottom-up map and top-down map are combined through a two-layer structure. Quantitative experiments demonstrate that the proposed method and features are effective to predict human fixation.

  • Network-Supported TCP Rate Control for the Coexistence of Multiple and Different Types of Flows on IP over PLC

    Adriano MUNIZ  Kazuya TSUKAMOTO  Masato TSURU  Yuji OIE  

     
    PAPER-Network

      Vol:
    E96-B No:10
      Page(s):
    2587-2600

    With the approval of IEEE 1901 standard for power line communications (PLC) and the recent Internet-enable home appliances like the IPTV having access to a content-on-demand service through the Internet as AcTVila in Japan, there is no doubt that PLC has taken a great step forward to emerge as the preeminent in-home-network technology. However, existing schemes developed so far have not considered the PLC network connected to an unstable Internet environment (i.e. more realistic situation). In this paper, we investigate the communication performance from the end-user's perspective in networks with large and variable round-trip time (RTT) and with the existence of cross-traffic. Then, we address the problem of unfair bandwidth allocation when multiple and different types of flows coexist and propose a TCP rate control considering the difference in terms of end-to-end delay to solve it. We validate our methodology through simulations, and show that it effectively deals with the throughput unfairness problem under critical communication environment, where multiple flows with different RTTs share the PLC and cross-traffic exists on the path of the Internet.

  • Path Loss Characterization in a Body-Centric Scenario at 94GHz

    Alice PELLEGRINI  Alessio BRIZZI  Lianhong ZHANG  Khaleda ALI  Yang HAO  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2448-2454

    The extensive study and design of Body Area Networks (BANs) and development of related applications have been an object of interest during the last few years. Indeed, the majority of applications have been developed to operate at frequencies up to X band. However nowadays, a new growing attention is being focused on moving the study of BANs to higher frequencies such as those in V andW bands. The characterization of the on-body propagation channel is therefore essential for the design of reliable mm-wave BAN systems. However the classical methods (FDTD, MoM, FEM) commonly used at lower frequencies are not computationally efficient at mm-wave due to the large amount of mesh elements needed to discretize an electrically large geometry such as the human body. To overcome this issue, a ray tracing technique, generally used for characterizing indoor propagation, has been used to analyze a specific channel: chest-to-belt link. The reliability of this high frequency method has been investigated in this paper considering three different test cases. Moreover, a comparison of simulations and measurements, both performed on a body centric scenario at 94GHz, is also presented as well.

  • Study on Information Leakage of Input Key due to Frequency Fluctuation of RC Oscillator in Keyboard

    Masahiro KINUGAWA  Yu-ichi HAYASHI  Takaaki MIZUKI  Hideaki SONE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E96-B No:10
      Page(s):
    2633-2638

    Recently, it has been shown that electromagnetic radiation from electrical devices leaks internal information. Some investigations have shown that information leaks through the clock frequency and higher harmonic waves. Thus, previous studies have focused on the information leakage from information processing circuits. However, there has been little discussion about information leaks from peripheral circuits. In this paper, we focus on the oscillation frequency of the integrated RC oscillators. In this paper, we use a keyboard as a device that includes a RC oscillator. Then experiments observed information leaks caused by key inputs. Our experiments show that frequency fluctuations cause information leakages and clarify what information can be acquired from the fluctuation. Then, we investigate the possibility of information leaking from peripheral circuits through modulated signals which are radiated by the peripheral circuits.

  • A Proper Phase Shift in Multiple Linear Optical Teleportation

    Kazuto OSHIMA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E96-D No:10
      Page(s):
    2266-2267

    In the Knill-Laflamme-Milburn (KLM) scheme, quantum teleportation is nearly deterministically carried out with linear optics. To reconstruct an original quantum state, however, a phase shift is required for an output state. We exhibit a proper phase shift to complete quantum teleportation.

  • Extended CRC: Face Recognition with a Single Training Image per Person via Intraclass Variant Dictionary

    Guojun LIN  Mei XIE  Ling MAO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:10
      Page(s):
    2290-2293

    For face recognition with a single training image per person, Collaborative Representation based Classification (CRC) has significantly less complexity than Extended Sparse Representation based Classification (ESRC). However, CRC gets lower recognition rates than ESRC. In order to combine the advantages of CRC and ESRC, we propose Extended Collaborative Representation based Classification (ECRC) for face recognition with a single training image per person. ECRC constructs an auxiliary intraclass variant dictionary to represent the possible variation between the testing and training images. Experimental results show that ECRC outperforms the compared methods in terms of both high recognition rates and low computation complexity.

  • Speaker Recognition Using Sparse Probabilistic Linear Discriminant Analysis

    Hai YANG  Yunfei XU  Qinwei ZHAO  Ruohua ZHOU  Yonghong YAN  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1938-1945

    Sparse representation has been studied within the field of signal processing as a means of providing a compact form of signal representation. This paper introduces a sparse representation based framework named Sparse Probabilistic Linear Discriminant Analysis in speaker recognition. In this latent variable model, probabilistic linear discriminant analysis is modified to obtain an algorithm for learning overcomplete sparse representations by replacing the Gaussian prior on the factors with Laplace prior that encourages sparseness. For a given speaker signal, the dictionary obtained from this model has good representational power while supporting optimal discrimination of the classes. An expectation-maximization algorithm is derived to train the model with a variational approximation to a range of heavy-tailed distributions whose limit is the Laplace. The variational approximation is also used to compute the likelihood ratio score of all trials of speakers. This approach performed well on the core-extended conditions of the NIST 2010 Speaker Recognition Evaluation, and is competitive compared to the Gaussian Probabilistic Linear Discriminant Analysis, in terms of normalized Decision Cost Function and Equal Error Rate.

  • A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials

    Ferruh ÖZBUDAK  Sedat AKLEYLEK  Murat CENK  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E96-A No:10
      Page(s):
    2016-2024

    In this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic.

  • Performance Evaluation of Short-Range MIMO Using a Method for Controlling Phase Difference between Each Propagation Channel

    Kazumitsu SAKAMOTO  Ken HIRAGA  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2513-2520

    A Simple decoding method for short-range MIMO (SR-MIMO) transmission can reduce the power consumption for MIMO decoding, but the distance between the transceivers requires millimeter-order accuracy in order to satisfy the required transmission quality. In this paper, we propose a phase difference control method between each propagation channel to alleviate the requirements for the transmission distance accuracy. In the proposed method, the phase difference between each propagation channel is controlled by changing the transmission (or received) power ratio of each element of sub-array antennas. In millimeter-wave broadband transmission simulation, we clarified that when sub-array antenna spacing is set to 6.6 mm and element spacing of sub-array antenna is set to 2.48mm, the proposed method can extend the transmission distance range satisfying the required transmission quality, which is that bit error rate (BER) before error correction is less than 10-2 from 9∼29mm to 0∼50mm in QPSK, from 15∼19mm to 0∼30mm in 16QAM, and from only 15mm to 4∼22mm in 64QAM.

  • S-Band GaN on Si Based 1kW-Class SSPA System for Space Wireless Applications

    Yuta KOBAYASHI  Satoshi YOSHIDA  Zen-ichi YAMAMOTO  Shigeo KAWASAKI  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1245-1253

    An S-band GaN on Si based 1kW-class SSPA system for space wireless applications is proposed. Since high-efficiency and high-reliability amplifier is one of the most important technologies for power and communication systems in a future space base station on a planet, compact, high-power, and high-efficiency SSPA is strongly requested instead of TWTA. Thus, we adopt GaN on Si based amplifier due to its remarkable material properties. At the beginning, thermal vacuum and radiation test of GaN on Si are conducted so as to confirm the space applicability. Fabricated SSPA system consists of eight 200W HPAs and coaxial waveguide power combiner. It achieves high efficiency such as 57% of drain efficiency and 87% of combining efficiency when RF output power achieves more than 60dBm. Furthermore, long-term stable operation and good phase noise characteristics are also confirmed.

  • Sidelobe Canceller Using Multiple Quantized Weights Combining for Reducing Excitation Error

    Tasuku KURIYAMA  Kazunari KIHIRA  Toru TAKAHASHI  Yoshihiko KONISHI  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2483-2490

    This paper presents a method of reducing excitation error in sidelobe canceller without increasing the resolution of the digital phase shifters and the digital attenuators. In general sidelobe canceller, the null direction is shifted because of the excitation error (quantization error and random error, etc.) and the suppression capability degrades. The proposed method can alleviate the influence of the excitation error by vector composition of some quantized excitation weights. Computer simulation results show that the output signal to interference and noise power ratio (SINR) using the proposed method can improve greatly in comparison with that using conventional quantized excitation weight.

  • Complexity of Strong Satisfiability Problems for Reactive System Specifications

    Masaya SHIMAKAWA  Shigeki HAGIHARA  Naoki YONEZAKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:10
      Page(s):
    2187-2193

    Many fatal accidents involving safety-critical reactive systems have occurred in unexpected situations, which were not considered during the design and test phases of system development. To prevent such accidents, reactive systems should be designed to respond appropriately to any request from an environment at any time. Verifying this property during the specification phase reduces the development costs of safety-critical reactive systems. This property of a specification is commonly known as realizability. The complexity of the realizability problem is 2EXPTIME-complete. We have introduced the concept of strong satisfiability, which is a necessary condition for realizability. Many practical unrealizable specifications are also strongly unsatisfiable. In this paper, we show that the complexity of the strong satisfiability problem is EXPSPACE-complete. This means that strong satisfiability offers the advantage of lower complexity for analysis, compared to realizability. Moreover, we show that the strong satisfiability problem remains EXPSPACE-complete even when only formulae with a temporal depth of at most 2 are allowed.

  • Autocorrelation Values of Generalized Cyclotomic Sequences of Order Six

    Chun-e ZHAO  Wenping MA  Tongjiang YAN  Yuhua SUN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E96-A No:10
      Page(s):
    2045-2048

    Binary sequences with low autocorrelation have important applications in communication systems and cryptography. In this paper, the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order six and period pq are discussed. Our result shows that the autocorrelation of these sequences is four-valued and that the corresponding values are in {-1,3,-5,pq} if the parameters are chosen carefully.

  • Joint Sequence Design for Robust Channel Estimation and PAPR Reduction for MIMO-OFDM Systems

    Chin-Te CHIANG  Carrson C. FUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2693-2702

    A joint superimposed sequence design, known as SuperImposed sequence for PAPR Reduction, or SIPR, using per-tone affine precoding technique is proposed to jointly estimate MIMO-OFDM channels and reduce the peak-to-average power ratio (PAPR) for MIMO-OFDM systems. The proposed technique optimizes the trade-off between BER, MSE of the channel estimate, and PAPR reduction performance. Moreover, it does not require side information to be transmitted for the removal of the sequence at the receiver, and the transmit redundancy can be as small as 1 symbol/subcarrier. The superimposed sequence is designed by solving a convex quadratically constrained quadratic programming problem and has a computational complexity comparable to previous technique using linear programming. It is shown that SIPR can be regarded as a generalization of the popular tone reservation (TR) technique, and thus, is able to outperform TR in terms PAPR reduction performance, with less transmit overhead. Simulation results and transmit redundancy analysis of SIPR and TR are shown to illustrate the efficacy of the proposed scheme.

5381-5400hit(18690hit)