The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

17601-17620hit(18690hit)

  • On Computing Connecting Orbits: General Algorithm and Applications to the Sine–Gordon and Hodgkin–Huxley Equations

    Eusebius J. DOEDEL  Mark J. FRIEDMAN  John GUCKENHEIMER  

     
    PAPER-Chaos and Related Topics

      Vol:
    E77-A No:11
      Page(s):
    1801-1805

    A systematic method for locating and computing branches of connecting orbits developed by the authors is outlined. The method is applied to the sine–Gordon and Hodgkin–Huxley equations.

  • A Simple Method to Control Indirect Information Flows

    Satoshi OZAKI  Tsutomu MATSUMOTO  Hideki IMAI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1938-1941

    The access control method adopted by UNIX is simple, understandable, and useful. However, it is quite possible that unexpected information flows occur when we are cooperating with some group members on UNIX. Introducing notions such as "flow right," "maximal permission" and "minimal umask value", this note proposes a simple method, can be seen as a natural extension of UNIX, to control indirect information flows without losing availability and understandability of UNIX.

  • Time–Frequency Domain Analysis of the Acoustic Bio–Signal--Successful Cases of Wigner Distribution Applied in Medical Diagnosis--

    Jun HASEGAWA  Kenji KOBAYASHI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1867-1869

    By applying Wigner distribution, which has high time resolution and high random noise reducing capability, to the acoustic bio–signals, the possibility of early diagnosis in both intracranial vascular deformation and prosthetic cardiac valve malfunction increased. Especially in latter case, 1st–order local moment of the distribution showed its effectiveness.

  • A Formal Linearization of Nonlinear Systems by the Chebyshev Interpolation and a Nonlinear Filter as an Application

    Kazuo KOMATSU  Hitoshi TAKATA  Teruo TSUJI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1753-1757

    In this paper we propose a formal linearization method which permits us to transform nonlinear systems into linear systems by means of the Chebyshev interpolation. Nonlinear systems are usually represented by nonlinear differential equations. We introduce a linearizing function that consists of a sequence of the Chebyshev polynomials. The nonlinear equations are approximated by the method of Chebyshev interpolation and linearized with respect to the linearizing function. The excellent characteristics of this method are as follows: high accuracy of the approximation, convenient design, simple operation, easy usage of computer, etc. The coefficients of the resulting linear system are obtained by recurrence formula. The paper also have error bounds of this linearization which show that the accuracy of the approximation by the linearization increases as the order of the Chebyshev polynomials increases. A nonlinear filter is synthesized as an application of this method. Numerical computer experiments show that the proposed method is able to linearize a given nonlinear system properly.

  • Propagation Characteristics of Dielectric Waveguides with Slanted Grating Structure

    Hirotaka TANAKA  Tsuneki YAMASAKI  Toshio HOSONO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1820-1827

    The propagation characteristics of dielectric waveguides with slanted grating structure are analyzed by using the combination of the improved Fourier series expansion method and the approximated multilayer method. The slanted grating region is appoximated by a structure with stratified thin modulated index layers. This method is effective to the guiding problems of the planar slanted grating, because the electromagnetic fields in each layer can be expressed by shifting the phase of the solution in the first layer. In this paper, numerical results are given for the grating with the rectangular and the sinusoidal profile for arbitrary slant angle. The radiation efficiencies for the grating with negative and positive slant angle are also discussed.

  • Estimation of Source Particle Trajectories from Far Electromagnetic Fields Using the Linard-Wiechert Superpotentials: Twin Particles System

    Hideki KAWAGUCHI  Toshihisa HONMA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1802-1807

    A particle trajectory estimation method from far electromagnetic fields are discussed in this paper. Authors have already presented a trajectory estimation method for single particle system and good agreements between a source particle trajectory and an estimated one have been obtained. For this, this paper discusses twin particles system as an examples of multi-particles systems for simplicity. First of all, it is pointed out that far electromagnetic fields from the twin particles system show quite different aspect from the single particle system using an example, radiation patterns produced by two particles which carry out circular motion. This result tells us that any trajectory estimations for general multi-particles system are almost impossible. However, it is shown that when the distance between the particles is small, the estimation method for the single particle system can be applied to the twin particles system, and that twin particles effects appear as disturbance of estimated trajectory.

  • Askant Vision Architecture Using Warp Model of Hough Transform--For Realizing Dynamic & Central/Peripheral Camera Vision--

    Hiroyasu KOSHIMIZU  Munetoshi NUMADA  Kazuhito MURAKAMI  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1206-1212

    The warp model of the extended Hough transform (EHT) has been proposed to design the explicit expression of the transform function of EHT. The warp model is a skewed parameter space (R(µ,ξ), φ(µ,ξ)) of the space (µ,ξ), which is homeomorphic to the original (ρ,θ) parameter space. We note that the introduction of the skewness of the parameter space defines the angular and positional sensitivity characteristics required in the detection of lines from the pattern space. With the intent of contributing some solutions to basic computer vision problems, we present theoretically a dynamic and centralfine/peripheral-coarse camera vision architecture by means of this warp model of Hough transform. We call this camera vision architecture askant vision' from an analogy to the human askant glance. In this paper, an outline of the EHT is briefly shown by giving three functional conditions to ensure the homeomorphic relation between (µ,ξ) and (ρ,θ) parameter spaces. After an interpretation of the warp model is presented, a procedure to provide the transform function and a central-coarse/peripheralfine Hough transform function are introduced. Then in order to realize a dynamic control mechanism, it is proposed that shifting of the origin of the pattern space leads to sinusoidal modification of the Hough parameter space.

  • Study for Signal Processing to Survey Pulsars Using Noise Suppression Filter Based on Average Spectrum

    Naoki MIKAMI  Tsuneaki DAISHIDO  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1904-1906

    This letter proposes the method using a filter to suppress the very large noise obstructive to the radio pulsar surveys. This noise suppression filter is constructed from the average of the amplitude spectrum of pulsar signal for each channel. Using this method, the dispersion measure, one of the important parameters in the pulsar surveys, can easily be extracted.

  • Stuck–Open Fault Detection in CMOS Circuits Using Single Test Patterns

    Enrico MACII  Qing XU  

     
    LETTER-Computer Aided Design (CAD)

      Vol:
    E77-A No:11
      Page(s):
    1977-1979

    Transistor stuck–open faults in CMOS devices are such that they force combinational circuits to exhibit sequential behaviors. It has been proved that, in general, stuck–open faults can not be modeled as stuck–at faults and, therefore, a sequence of two consecutive test vectors is necessary to guarantee stuck–open fault detection. In this paper we propose a technique to modify CMOS circuits in such a way that any stuck–open fault in the circuit can be detected using only a single test pattern. The amount of additional logic required to achieve the goal is rather limited: Two pass transistors, one input line, and one inverter (or buffer) at the output of the circuit are sufficient to make stuck–open faults detectable by test patterns generated by usual stuck–at fault test generators.

  • Object Oriented API for Operations System Development

    Kenji MINATO  Ikuo YODA  Nobuo FUJII  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E77-B No:10
      Page(s):
    1209-1219

    ISO and ITU-T have developed the standard concept of the Telecommunications Management Network (TMN). This standard does not, however, specify interface implementation. The user requires an Application Programming Interface (API) that bridges user application and the TMN concept to construct a TMN-based application. This paper proposes an object oriented API (OOAPI) that is suitable for TMN-based operations system implementation. OOAPI is one interface of the Common Management Information Service Element (CMISE), and uses the Common Management Information Protocol (CMIP). OOAPI is composed of two C++ programming language constructs: Data Object and Interface object "M_User". The Data Object makes it easier for the user to access management information. The M_User provides a connection-less CMISE interface because the OOAPI handles CMIP association automatically. The M_User also provides MO location-transparency by using the OSI Directory Service. This paper compares the existing MO location-transparency schemes with the OOAPI method, and clarifies the advantages of OOAPI. This paper also indicates results from OOAPI trials, and confirms that OOAPI has sufficient performance to implement highly effective TMN operations system.

  • Optimization of Multiple-Valued Logic Functions Based on Petri Nets

    Ali Massoud HAIDAR  Mititada MORISUE  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1607-1616

    This paper presents a novel and successful optimization algorithm for optimizing Multiple-valued Logic (MVL) functions based on Petri net theory. Mathematical properties and Petri net modeling tools to implement MVL systems are introduced. On the basis of these properties and modeling tools, the optimization algorithm can synthesize, analyze and minimize an arbitrary quaternary logic function of n-input variables. The analysis technique of optimization algorithm is a well-established concept from both theories of MVL and Petri nets, and this can be applied to specify and optimize any MVL Petri net system. In this paper, Petri nets of Galois field have been proposed in order to form a complete system, which can be used to realize and construct VLSI circuit of any MVL function. Based on the Petri nets of Galois field and the proposed algorithm, the quaternary minimum and maximum functions have been analyzed, minimized, and designed. These applications have demonstrated the usefulness of optimization algorithm. Based on Petri net theory, the analysis revealed important information about MVL Petri net modeled systems, where this information has been used to evaluate the modeled system and suggest improvements or changes. For evaluation, advantages of the proposed method over a conventional logic minimization method are presented. Also, we have observed that the MVL Petri nets have the following advantages: Designers can exhibit clearly, simply and systematically any complex MVL Petri net nodel, number of concurrent operations is increased, number of places and transitions that are needed to realize a MVL model is very small, and the interconnection problems can be greatly reduced.

  • A Polynomial-Time Recognizable Subclass of Lexical-Functional Grammars

    Sachiko ANDO  Ryuichi NAKANISHI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:10
      Page(s):
    1067-1076

    Lexical-functional grammars (lfg's) were introduced to define the syntax of natural languages. In lfg's, a finite set of attribute-value pairs called an f-structure is associated with each internal node in a derivation tree. For efficient parsing, some subclasses of lfg's were proposed. However, these subclasses have been shown to generate at least one -complete language. In this paper, we introduce a subclass of lfg's called pd-lfg's. In pd-lfg's, an f-structure forms a pushdown stack. For a node v in a derivation tree and at most one specified child vi of v, the f-structure of vi is obtained by performing a specified pushdown stack operation on the f-structure of v. We prove the equivalence of the generative capacity of modified head grammars (mhg's) and that of pd-lfg's. Since the languages generated by mhg's are known to be recognizable in O(n6) time, the languages generated by pd-lfg's can be recognized in O(n6) time.

  • Analysis of Bonding State in Clad Contact Using Ultrasonic Microscope

    Takeshi SUZUKI  Masayuki NODA  

     
    PAPER-Contact Reliability

      Vol:
    E77-C No:10
      Page(s):
    1621-1626

    In clad contacts of bonded dissimilar metals used in relays and switches, the bonding state affects the switching performance of those devices. Examining the bonding state and analyzing the relationship between the bonding state and the causes of malfunction, such as welding of the contact, leads to improvement in reliability of electromechanical devices. In this experiment we examined, with an ultrasonic microscope, the bonding state in riveted clad contacts which had been subjected to load-breaks of in-rush current, and were able to demonstrate the causal relation of the bonding state with malfunctions of the contacts. The use of the ultrasonic microscope made it possible to perform a hitherto difficult detailed analysis of the bonding state of clad contacts. It was also confirmed that this was an extremely effective method for studying the relationship with switching performance.

  • Algorithms to Realize an Arbitrary BPC Permutation in Chordal Ring Networks and Mesh Connected Networks

    Hiroshi MASUYAMA  

     
    PAPER-Software Theory

      Vol:
    E77-D No:10
      Page(s):
    1118-1129

    A multiple instruction stream-multiple data stream (MIMD) computer is a parallel computer consisting of a large number of identical processing elements. The essential feature that distinguishes one MIMD computer family from another is the interconnection network. In this paper, 2 representative types of interconnection networks are dealt with the chordal ring network and the mesh connected network. A family of regular graphs of degree 3, called chordal rings is presented as a possible candidate for the implementation of a distributed system and for fault-tolerant architectures. The symmetry of graphs makes it possible to determine message routing by using a simple distributed algorithm. Another candidate having the same property is the mesh connected networks. Arbitrary data permutations are generally accomplished by sorting. For certain classes of permutations, however, there exist algorithms that are more efficient than the best sorting algorithm. One such class is the bit permute complement (BPC) class of permutations. The class of BPC permutations includes many of the frequently occurring permutations such as bit reversal, bit shuffle, bit complement, matrix transpose, etc. In this paper, we evaluate the abilities of the above networks to realize BPC permutations. In this paper, we, first, develop algorithms required 2 token storage registers in each node to realize an arbitrary BPC permutaion in both chordal ring networks and mesh connected networks. We next evaluate the ability to realize BPC permutations in these networks of an arbitrary size by estimating the number of required routing steps.

  • High-Density, High-Bandwidth Connectors for Broad-Band ISDN

    Ken-ichi NAKANO  Kei-ichi YASUDA  Tohru KISHIMOTO  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1567-1574

    High-speed pulse propagation, up to several hundred Mbps or higher, will play an important role in telecommunication systems for B-ISDN. High-performance packaging, especially high-speed, high-throughput interconnection, is strongly required. For advanced telecommunication systems, giga-bit signal transmission has been developed at the multi-chip module level, and 300 to 600 Mbps signal transmission has been reached at the printed circuit board level. Electrical inter-cabinet interconnections of 150 to 300 Mbps have been achieved for up to several tens of meters. High-speed, high-throughput connectors are the key to achieving high-performance telecommunication packaging systems. Two technologies are extremely important. One is for high-density, high-pin-count connectors, and the other is for high-speed signal transmission connectors. The requirements for the connectors needed for advanced high-performance telecommunication systems are described. Several high-density, high-bandwidth connectors developed for high-performance packaging system are introduced.

  • Characteristics and Static Fatigue Reliability of a Zirconia Alignment Sleeve for Optical Connectors

    Kazunori KANAYAMA  Yasuhiro ANDO  Shin'ichi IWANO  Ryo NAGASE  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1559-1566

    This paper describes the optical characteristics and static fatigue reliability of a zirconia alignment sleeve, which is a component part of an optical connector with zirconia ferrules. This combination of sleeve and ferrules hardly generates any wear debris during connector insertion and removal cycles. This has reduced the cleaning frequency of the ferrule endface during cycles and greatly improved the return loss stability of the optical connectors. The zirconia alignment sleeve enables stable return loss characteristics to be achieved over a wide temperature range as it has the same thermal expansion coefficient as the zirconia ferrule. Furthermore, the gauge retention force for the zirconia alignment sleeve is defined with a view to its practical use. This force must be between 2.0 and 3.9 N to allow stable optical connections to be made under various mechanical and environmental conditions. We also clarify the conditions for a proof test by which to prevent the occurrence of static fatigue fractures in the sleeve, and we confirm the validity of the test. The static fatigue parameters for zirconia ceramics and derived from the static fatigue theory for brittle materials and fracture testing. We use these static fatigue parameters to predict the lifetime of a zirconia sleeve under working stress. An appropriate stress level for the proof test which eliminates weak sleeves, is about 3 times greater than working stress. The strength of the sleeve as demonstrated in the proof test is confirmed by accelerative stress aging. The performance of this sleeve is superior to that of a conventional copper alloy sleeve and the proof test confirms its reliability; under 0.1 FIT for 20 years of use.

  • Logic Synthesis and Optimization Algorithm of Multiple-Valued Logic Functions

    Ali Massound HAIDAR  Mititada MORISUE  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E77-D No:10
      Page(s):
    1106-1117

    This paper presents a novel and successful logic synthesis method for optimizing ternary logic functions of any given number of input variables. A new optimization algorithm to synthesize and minimize an arbitrary ternary logic function of n-input variables can always lead this function to optimal or very close to optimal solution, where [n (n1)/2]1 searches are necessary to achieve the optimal solution. Therefore, the complexity number of this algorithm has been greatly reduced from O(3n) into O(n2). The advantages of this synthesis and optimization algorithm are: (1) Very easy logic synthesis method. (2) Algorithm complexity is O(n2). (3) Optimal solution can be obtained in very short time. (4) The method can solve the interconnection problems (interconnection delay) of VLSI and ULSI processors, where very fast and parallel operations can be achieved. A transformation method between operational and polynomial domains of ternary logic functions of n-input variables is also discussed. This transformation method is very effective and simple. Design of the circuits of GF(3) operators, addition and multiplication mod-3, have been proposed, where these circuits are composed of Josephson junction devices. The simulation results of these circuits and examples show the following advantages: very good performances, very low power consumption, and ultra high speed switching operation.

  • A Pattern Classifier--Modified AFC, and Handwritten Digit Recognition

    Yitong ZHANG  Hideya TAKAHASHI  Kazuo SHIGETA  Eiji SHIMIZU  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:10
      Page(s):
    1179-1185

    We modified the adaptive fuzzy classification algorithm (AFC), which allows fuzzy clusters to grow to meet the demands of a given task during training. Every fuzzy cluster is defined by a reference vector and a fuzzy cluster radius, and it is represented as a shape of hypersphere in pattern space. Any pattern class is identified by overlapping plural hyperspherical fuzzy clusters so that it is possible to approximate complex decision boundaries among pattern classes. The modified AFC was applied to recognize handwritten digits, and performances were shown compared with other neural networks.

  • Mathodology for Latchup-Free Design in Merged BiPMOSs

    Youichiro NIITSU  

     
    PAPER-Integrated Electronics

      Vol:
    E77-C No:10
      Page(s):
    1668-1676

    The methodology for latchup-free design in bipolar and PMOS merged gates, so-called BiPMOS gates, is considered. Although BiPMOS gates can provide higher switching characteristics than conventional, individually drawn, BiCMOS gates even when the supply voltage is reduced, the general methodology to prevent latchup has been lacking. This paper presents an approximate, but sufficiently correct, mathematical technique to solve the Laplace equation, which gives the distribution of latchup trigger current for the given BiPMOS drawings. It is shown that the resistances of the collector plug and the spreading resistance under the base-collector junction greatly influence latchup, and that the well-emitter overlapping space becomes a problem in the case of a single collector. The distribution of latchup triggering current for the double-emitter double collector NPN transistor indicates the optimum position of the source diffusion area.

  • Reduced State Space Generation of Concurrent Systems Using Weak Persistency

    kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1602-1606

    State space explosion is a serious problem in analyzing discrete event systems that allow concurrent occurring of events. A new method is proposed for generating reduced state spaces of systems. This method is an improvement of Valmari's stubborn set method. The generated state space preserves liveness, livelocks, and terminal states of the ordinary state space. Petri nets are used as a model of systems, and a method is shown for generating a reduced state space from a given Petri net.

17601-17620hit(18690hit)