The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

17941-17960hit(18690hit)

  • Improvement of Reliability of Large-Sized Ceramic Capacitors and Dummy Resistors for the High Power Transmitter

    Tohru MIZOKAMI  Hiroki TAKAZAWA  Eiichi KAWABATA  Yuzi OGATA  Haruo OHTA  Kazuaki WAKAI  Kazuhisa HAYEIWA  

     
    PAPER-Evaluation of Reliability Improvement

      Vol:
    E77-A No:1
      Page(s):
    220-227

    This paper describes the effective countermeasures for exfoliation of large-sized ceramic capacitors, deterioration of dummy resistors and developement of a spark sensor with UVtrons at 300-500 kW transmitting stations. Cracks and exfoliation were found at the electrode of large-sized ceramic capacitors in the output circuit of the 500 kW transmitter. The exfoliation was caused by the temperature rise and the thermal fatigues at the electrode with the Nickel plating including Irons. A pure Nickel-plated electrode including no Irons and a new soldering method using disk-typed solder with a large adhesive area are employed in order to reduce the temperature rise. The temperature rise of the improved capacitor was 18 lower than the conventional one. Deterioration of ELEMA resistors of the 300 kW dummy antenna was discovered. The damage of the resistor was caused by the concentration of the electric current followed by the thermal stress cycle which made mechanical exhaustion at the electrode. Therefore, oval-shaped type resistors with much longer electric current path (20% up) to suppress the concentration of current flow and much slower temperature rise are newly developed. In case that sparks occurred at DC or RF high voltage impressed sections of the high power transmitting equipment, the discharged points could be seriously damaged by the transmitter energy itself. In orded to prevent this, a spark detector using UV (Ultra violet) trons is developed and installed at the matchign circuit of the 500 kW transmitter. Conventional UV sensors with only one UVtron could not detect feeble discharges and sparks with a duration time of less than 150 ms because of false outputs by the back ground noise. Since choosing three out of four UV trons system is employed, possibility producing a false output will be just one to 445 years theoretically. This means extremely reliable and sensitive spark detection system are constructed. These countermeasures have improved reliability of the transmitting equipment greatly. No damages have been found in the transmitters ever since.

  • A Note on Optimal Checkpoint Sequence Taking Account of Preventive Maintenance

    Masanori ODAGIRI  Naoto KAIO  Shunji OSAKI  

     
    LETTER-Maintainability

      Vol:
    E77-A No:1
      Page(s):
    244-246

    Checkpointing is one of the most powerful tools to operate a computer system with high reliability. We should execute the optimal checkpointing in some sense. This note shows the optimal checkpoint sequence minimizing the expected loss, Numerical examples are shown for illustration.

  • Focused Ion Beam Applications to Failure Analysis of Si Device Chip

    Kiyoshi NIKAWA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    174-179

    New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.

  • Software Reliability Measurement and Assessment with Stochastic Differential Equations

    Shigeru YAMADA  Mitsuhiro KIMURA  Hiroaki TANAKA  Shunji OSAKI  

     
    PAPER-Software Reliability

      Vol:
    E77-A No:1
      Page(s):
    109-116

    In this paper, we propose a plausible software reliability growth model by applying a mathematical technique of stochastic differential equations. First, we extend a basic differential equation describing the average behavior of software fault-detection processes during the testing phase to a stochastic differential equation of ItÔ type, and derive a probability distribution of its solution processes. Second, we obtain several software reliability measures from the probability distribution. Finally, applying a method of maximum-likelihood we estimate unknown parameters in our model by using available data in the actual software testing procedures, and numerically show the stochastic behavior of the number of faults remaining in the software system. Further, the model is compared among the existing software reliability growth models in terms of goodness-of-fit.

  • A Study on Reliability and Failure Mechanism of T-Shaped Gate HEMTs

    Takahide ISHIKAWA  Kenji HOSOGI  Masafumi KATSUMATA  Hiroyuki MINAMI  Yasuo MITSUI  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    158-165

    This paper describes the reliability on recess type T-shaped gate HEMTs and their major failure mechanism investigated by accelerated life tests and following failure analysis. In this study, high temperature storage tests with a DC bias condition have been conducted on three different recess depths of 100, 125, and 150 nm. The results have clarified that the shallow recess devices of under 125 nm depth have no degration in minimum noise figure Fmin or gain Ga characteristics, indicating that standard HEMT devices, whose recess depth is chosen to be far under 125 nm, possess a sufficient reliability level. However, the devices with deep recess of 150 nm have shown degradation in both Fmin and Ga. Precise failure analyses including SEM observation and von Mises stress simulation have firstly revealed that the main failure mode in deeply recessed T-shaped gate HEMTs is increase in gate electrode's parasitic resistance Rg, which is caused by separation of "head" and "stem" parts of the T-shaped gate electrode due to thermo-mechanical stress concentration.

  • An Inductive Student Modeling Method which Deals with Student Contradictions

    Yasuyuki KONO  Mitsuru IKEDA  Riichiro MIZOGUCHI  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    39-48

    Student contradictions are the essentials of concepts and knowledge acquisition processes of a student, in the course of tutoring. This paper presents a new perspective to represent student contradictions and a student modeling architecture to capture them. The formulation of a student modeling mechanism enables flexible decision making by using information obtained from students. A nonmonotonic and inductive student model inference system HSMIS has been developed and formulated to cope with modeling contradictions, which basically embodies advanced representation power, sufficiently high adaptability and generality. The HSMIS is evaluated and compared with other representative systems in order to demonstrate its effectiveness.

  • New Key Generation Algorithm for RSA Cryptosystem

    Ryuichi SAKAI  Masakatu MORII  Masao KASAHARA  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    89-97

    For improving the RSA cryptosystem, more desirable conditions on key structures have been intensively studied. Recently, M.J.Wiener presented a cryptanalytic attack on the use of small RSA secret exponents. To be secure against the Wiener's attack, the size of a secret exponent d should be chosen more than one-quarter of the size of the modulus n = pq (in bits). Besides, it is more desirable, in frequent cases, to make the public exponent e as small as possible. However if small d is chosen first, in such case as the digital signature system with smart card, the size of e is inevitably increased to that of n when we use the conventional key generation algorithm. This paper presents a new algorithm, Algorithm I, for generating of the secure RSA keys against Wiener's attack. With Algorithm I, it is possible to choose the smaller sizes of the RSA exponents under certain conditions on key parameters. For example, with Algorithm I, we can construct the RSA keys with the public exponent e of two-thirds and secret exponent d of one-third of the size of modulus n (in bits). Furthermore we present a modified version of Algorithm I, Algorithm II, for generating of the strong RSA keys having the difficulty of factoring n. Finally we analyze the performances of Algorithm I and Algorithm II.

  • The Enhancement of Electromigration Lifetime under High Frequency Pulsed Conditions

    Kazunori HIRAOKA  Kazumitsu YASUDA  

     
    PAPER-Reliability Testing

      Vol:
    E77-A No:1
      Page(s):
    195-203

    Experimental evidence of a two-step enhancement in electromigration lifetime is presented through pulsed testing that extends over a wide frequency range from 7 mHz to 50 MHz. It is also found, through an accompanying failure analysis, that the failure mechanism is not affected by current pulsing. Test samples were the lowew metal lines and the through-holes in double-level interconnects. The same results were obtained for both samples. The testing temperature of the test conductor was determined considering the Joule heating to eliminate errors in lifetime estimation due to temperature errors. A two-step enhancement in lifetime is extracted by normalizing the pulsed electromigration lifetime by the continuous one. The first step occurs in the frequency range from 0.1 to 10 kHz where the lifetime increases with (duty ratio)-2 and the second step occurs above 100 kHz with (duty ratio)-3. The transition frequency in the first-step enhancement shifts to the higher frequency region with a decrease in stress temperature or an increase in current density, whereas the transition frequency in the second step is not affected by these stress conditions. The lifetime enhancement is analyzed in relation to the relaxation process during the current pulsing. According to the two-step behavior, two distinct relaxation times are assumed as opposed to the single relaxation time in other proposed models. The results of the analysis agree with the experimental results for the dependence on the frequency and duty ratio of pulses. The two experimentally derived relaxation times are about 5 s and 1 µs.

  • Technological Trends and Key Technologies in Intelligent Vehicles

    Takao SASAYAMA  

     
    INVITED PAPER

      Vol:
    E76-C No:12
      Page(s):
    1717-1726

    The technical trends of intelligent vehicles are discussed basing on the progress of technology of microelectronics, sensing and information processing. The concept of intelligent vehicles has started when the installation of computers on vehicles became possible in 1970s. The functions of computerized cars increased gradually with the progress of technology of microelectronics, sensing and information processing responding to the demands of the society. The first issues we had to challenge with the capability of electronic systems were the environmental and the energy resources problems. The R & D works of these purposes created many sophisticated computer control systems. Moreover, these works established the base of intelligent vehicles that contains various functions for drivability, safety, and information communications. On the other hand, many kinds of information and communication technology became useful to solve the issues on automobiles through infrastructure systems. United States, Europe, and Japan have started their own projects to realize such hierarchy management systems for traffic and vehicles. From the viewpoint of vehicle itself, it is the indispensable conditions and directions to implement the computer and telecommunications functions to the vehicles to establish clean, comfort, convenient, efficient and safe automobiles toward the next century.

  • An Autocorrelation Associative Neural Network with Self-Feedbacks

    Hiroshi UEDA  Masaya OHTA  Akio OGIHARA  Kunio FUKUNAGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2072-2075

    In this article, the autocorrelation associative neural network that is one of well-known applications of neural networks is improved to extend its capacity and error correcting ability. Our approach of the improvement is based on the consideration that negative self-feedbacks remove spurious states. Therefore, we propose a method to determine the self-feedbacks as small as possible within the range that all stored patterns are stable. A state transition rule that enables to escape oscillation is also presented because the method has a possibility of falling into oscillation. The efficiency of the method is confirmed by means of some computer simulations.

  • A Hybrid-ARQ Protocol with Adaptive Rate Error Control

    Hui ZHAO  Toru SATO  Iwane KIMURA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:12
      Page(s):
    2095-2101

    This paper presents an adaptive rate error control scheme for digital communication over time-varying channels. The cyclic code with majority-logic decoding is used in a cascaded way as an inner code to create a simple and powerful hybrid-ARQ error control scheme. Inner code is used only for error correction and the outer code is used for both error correction and error detection. When an error is detected, retransmission is required. The unsuccessful packets are not discarded as with conventional schemes, but are combined with their retransmitted copies. Approximations for the throughput efficiency and the undetectable error probability are given. A high reliability coupled with a simple high-speed implementation makes it suitable for high data rate error control over both stationary and nonstationary channels. Adaptive error control scheme becomes the best solution for time-varying channels when the optimum code is selected according to the actual channel conditions to enhance the system performance. The main feature of this system is that the basic structure of the encoder and decoder need not be modified while the error-correction capability of the code increases. Results of a comparative analysis show that the proposed scheme outperforms other similar ARQ protocols.

  • Speech Recognition of lsolated Digits Using Simultaneous Generative Histogram

    Yasuhisa HAYASHI  Akio OGIHARA  Kunio FUKUNAGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2052-2054

    We propose a recognition method for HMM using a simultaneous generative histogram. Proposed method uses the correlation between two features, which is expressed by a simultaneous generative histogram. Then output probabilities of integrated HMM are conditioned by the codeword of another feature. The proposed method is applied to isolated digit word recognition to confirm its validity.

  • Multiplexing and Data Communications Integrated Circuits for Automotive In-Vehicle Networks

    Akira KAWAHASHI  Masaki AZUMA  Yasushi SHINOJIMA  Masaru NAGAO  

     
    PAPER

      Vol:
    E76-C No:12
      Page(s):
    1756-1766

    This paper describes our recent developments of ASICs for automotive multiplexing and data communications to implement in-vehicle networks. With the advancement of automotive electronics, there are ever growing needs for in-vehicle networks. One need is associated with solving the problem of an increasing number of electrical signal wires that inevitably accompany the increasing applications of automotive electronics. Another kind of need is concerned with sharing vehicle control data among several electronic control units such as engine, brake, suspension, and steering electronic control units to achieve an integrated vehicle control system for the purpose of obtaining higher performances in vehicle dynamics. In order to reduce the number of signal wires and share the control data, in-vehicle networks based on multiplexing and data communications are required. In this paper, two original communication protocols are presented to respectively cover low- and highi-speed multiplexing and data communications that are two most needed communication speed areas in our present and future automobiles. ASICs for the presented communication protoclos were designed and fabricated, using 2 µm COMS process. They have the chip size of 3.2 mm2.7 mm with 5,000 transistors and 6.9 mm4.9 mm with 18,000 transistors respectively for low- and high-speed multiplexing and data communications. An elaborate bus driver/receiver ASIC required for high-speed multiplexing and data communications was also designed and fabricated, using 35 V DC bipolar process. As one of its distinctive features, it can greatly suppress radio frequency noise radiated from a communication bus. It has the chip size of 4.8 mm3.8 mm that contains 570 device elements. The features of the protocols are given in detail with the descriptions of the developed ASICs.

  • Data Compression of Long Time ECG Recording Using BP and PCA Neural Networks

    Yasunori NAGASAKA  Akira IWATA  

     
    PAPER

      Vol:
    E76-D No:12
      Page(s):
    1434-1442

    The performances of BPNN (neural network trained by back propagation) and PCANN (neural network which computes principal component analysis) for ECG data compression have been investigated from several points of view. We have compared them with an existing data compression method TOMEK. We used MIT/BIH arrhythmia database as ECG data. Both BPNN and PCANN showed better results than TOMEK. They showed 1.1 to 1.4 times higher compression than TOMEK to achieve the same accuracy of reproduction (13.0% of PRD and 99.0% of CC). While PCANN showed better learning ability than BPNN in simple learning task, BPNN was a little better than PCANN regarding compression rates. Observing the reproduced waveforms, BPNN and PCANN had almost the same performance, and they were superior to TOMEK. The following characteristics were obtained from the experiments. Since PCANN is sensitive to the learning rate, we had to precisely control the learning rate while the learning is in progress. We also found the tendency that PCANN needs larger amount of iteration in learning than BPNN for getting the same performance. PCANN showed better learning ability than BPNN, however, the total learning cost were almost the same between BPNN and PCANN due to the large amount of iteration. We analyzed the connection weight patterns. Since PCANN has a clear mathematical background, its behavior can be explained theoretically. BPNN sometimes generated the connection weights which were similar to the principal components. We supposed that BPNN may occasionally generate those patterns, and performs well while doing that. Finally we concluded as follows. Although the difference of the performances is smal, it was always observed and PCANN never exceeded BPNN. When the ease of analysis or the relation to mathematics is important, PCANN is suitable. It will be useful for the study of the recorded data such as statistics.

  • Higher-Order Analysis on Phase Noise Generation in Varactor-Tuned Oscillators-- Baseband Noise Upconversion in GaAs MESFET Oscillators--

    Takashi OHIRA  

     
    LETTER-Microwave and Millimeter Wave Technology

      Vol:
    E76-C No:12
      Page(s):
    1851-1854

    Phase noise generation in varactor-tuned oscillators is analyzed by an asymptotic perturbation technique. It is found out that 1/f noise and AM noise are converted into phase noise by first- and higher-order nonlinearities of the varactor. The deduced formula can be utilized in CAD for circuit evaluation/optimization of varactor-tuned osicillators.

  • A Neural Network with a Function of lnhibiting Subtours on TSP

    Akira YAMAMOTO  Masaya OHTA  Hiroshi UEDA  Akio OGIHARA  Kunio FUKUNAGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2068-2071

    The Traveling Salesman Problem (TSP) can be solved by a neural network using the coding scheme based on the adjacency of city in the tour. Using this coding scheme, the neural network generates a better solution than that using other coding schemes. We, however, often get the invalid solution consisting of some subtours. In this article, we propose a method of eliminating subtours using additional neurons. On the computer simulation it is shown that we get the optimum solution by means of taking only O(n2) additional neurons and trials.

  • In-Vehicle Information Systems and Semiconductor Devices They Employ

    Takeshi INOUE  Kikuo MURAMATSU  

     
    INVITED PAPER

      Vol:
    E76-C No:12
      Page(s):
    1744-1755

    It was more than 10 years ago that the first map navigation system, as an example of invehicle information system, has appeared in the market in Japan. Today's navigation system has been improved to the level that the latest system has 10 micro-processors, 7 MBytes of memories, and 4 GBytes of external data storage for map database. From the viewpoint of the automobile driver, there are still some problems with the system. Major problems in general are a lack of traffic information, better human interface, and a need for cost-reduction. The introduction of application specific ICs (ASICs) is expected to make systems smaller, costless, and give higher speed response. Today's in-vehicle information systems are reviewed function by function to discover what functions need to be implemented into ASICs for future systems, what ASICs will be required, and what technology has to be developed. It is concluded that more integration technology is expected including high parformance CPUs, large capacity memories, interface circuits, and some analog circuits such as DA converter. To develop this technology, some, major problems such as power consumption, number of input/output signals, as well as design aid and process technology are pointed out.

  • ECG Data Compression by Using Wavelet Transform

    Jie CHEN  Shuichi ITOH  Takeshi HASHIMOTO  

     
    PAPER

      Vol:
    E76-D No:12
      Page(s):
    1454-1461

    A new method for the compression of electrocardiographic (ECG) data is presented. The method is based on the orthonormal wavelet analysis recently developed in applied mathematics. By using wavelet transform, the original signal is decomposed into a set of sub-signals with different frequency channels corresponding to the different physical features of the signal. By utilizing the optimum bit allocation scheme, each decomposed sub-signal is treated according to its contribution to the total reconstruction distortion and to the bit rate. In our experiments, compression ratios (CR) from 13.5: 1 to 22.9: 1 with the corresponding percent rms difference (PRD) between 5.5% and 13.3% have been obtained at a clinically acceptable signal quality. Experimental results show that the proposed method seems suitable for the compression of ECG data in the sense of high compression ratio and high speed.

  • Efficient Application of Coding Technique for Data Compression of ECG

    Susumu TSUDA  Koichi SHIMIZU  Goro MATSUMOTO  

     
    PAPER

      Vol:
    E76-D No:12
      Page(s):
    1425-1433

    A technique was developed to reduce ECG data efficiently within a controlled accuracy. The sampled and digitized data of the original waveform of an ECG is transformed in three major processes. They are the calculation of a beat-to-beat variation, a polygonal approximation and the calculation of the difference between consecutive node points. Then, an adaptive coding technique is applied to minimize redundancies in the data. It was demonstrated that the ECG waveform sampled in 200 Hz, 10 bit/sample, 5 µV/digit could be reduced with the bit reduction ratio of about 10% and within the reconstruction error of about 2.5%. A polygonal approximation method, called MSAPA, was newly developed as a modification of the well known method, SAPA. It was shown that the MSAPA gave better reduction efficiency and smaller reconstruction error than the SAPA, when it was applied to the beat-to-beat variation waveform. The importance of the low-pass filtering as a preprocessing for the polygonal approximation was confirmed in concrete examples. The efficiency of the proposed technique was compared with the cased in which the polygonal approximation was not used. Through these analyses, it was found that the redundancy elimination of the coding technique worked effectively in the proposed technique.

  • Present and Future Automotive Electronics

    Shuji MIZUTANI  

     
    INVITED PAPER

      Vol:
    E76-C No:12
      Page(s):
    1713-1716

    Electronics and automobiles were bound together by the introduction of emission regulations in the 1970's. The rapid progress of control technology and semiconductors that typify microcomputers has brought still closer relations between them. Without electronics, it would be impossible to realize features such as pursuit of comfort and environmental and safety measures which should be added to the automobile's fundamental features. In looking ahead to the future, the role of electronics in achieving electric automobiles and the ultimate goal of "automatic driving" is ever-increasing. Everyone knows that automobiles have become indispensable in our lives. In the future, the role of electronics will become increasingly important in order to evolve automobiles even further to allow harmonization with society.

17941-17960hit(18690hit)