The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2521-2540hit(20498hit)

  • Efficient Methods of Inactive Regions Padding for Segmented Sphere Projection (SSP) of 360 Video

    Yong-Uk YOON  Yong-Jo AHN  Donggyu SIM  Jae-Gon KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/08/20
      Vol:
    E101-D No:11
      Page(s):
    2836-2839

    In this letter, methods of inactive regions padding for Segmented Sphere Projection (SSP) of 360 videos are proposed. A 360 video is projected onto a 2D plane to be coded with diverse projection formats. Some projection formats have inactive regions in the converted 2D plane such as SSP. The inactive regions may cause visual artifacts as well as coding efficiency decrease due to discontinuous boundaries between active and inactive regions. In this letter, to improve coding efficiency and reduce visual artifacts, the inactive regions are padded by using two types of adjacent pixels in either rectangular-face or circle-face boundaries. By padding the inactive regions with the highly correlated adjacent pixels, the discontinuities between active and inactive regions are reduced. The experimental results show that, in terms of end-to-end Weighted to Spherically uniform PSNR (WS-PSNR), the proposed methods achieve 0.3% BD-rate reduction over the existing padding method for SSP. In addition, the visual artifacts along the borders between discontinuous faces are noticeably reduced.

  • Court-Divisional Team Motion and Player Performance Curve Based Automatic Game Strategy Data Acquisition for Volleyball Analysis

    Xina CHENG  Takeshi IKENAGA  

     
    PAPER-Systems and Control, Vision

      Vol:
    E101-A No:11
      Page(s):
    1756-1765

    Automatic game strategy data acquisition is important for the realization of the professional strategy analysis systems by providing evaluation values such as the team status and the efficacy of plays. The key factor that influences the performance of the strategy data acquisition in volleyball game is the unknown player roles. Player role means the position with game meaning of each player in the team formation, such as the setter, attacker and blocker. The unknown player role makes individual player unreliable and loses the contribution of each player in the strategy analysis. This paper proposes a court-divisional team motion feature and a player performance curve to deal with the unknown player roles in strategy data acquisition. Firstly, the court-divisional team motion feature is proposed for the team tactical status detection. This feature reduces the influence of individual player information by summing up the ball relative motion density of all the players in divided court area, which corresponds to the different plays. Secondly, the player performance curves are proposed for the efficacy variables acquisition in attack play. The player roles candidates are detected by three features that represent the entire process of a player starting to rush (or jump) to the ball and hit the ball: the ball relative distance, ball approach motion and the attack motion feature. With the 3D ball trajectories and multiple players' positions tracked from multi-view volleyball game videos, the experimental detection rate of each team status (attack, defense-ready, offense-ready and offense status) are 75.2%, 84.2%, 79.7% and 81.6%. And for the attack efficacy variables acquisition, the average precision of the set zone, the number of available attackers, the attack tempo and the number of blockers are 100%, 100%, 97.8%, and 100%, which achieve 8.3% average improvement compared with manual acquisition.

  • Multiple Symbol Differential Detection Scheme for IEEE 802.15.4 BPSK Receivers

    Gaoyuan ZHANG  Hong WEN  Longye WANG  Xiaoli ZENG  Jie TANG  Runfa LIAO  Liang SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1975-1979

    A simple and novel multiple-symbol differential detection (MSDD) scheme is proposed for IEEE 802.15.4 binary phase shift keying (BPSK) receivers. The detection is initiated by estimating and compensating the carrier frequency offset (CFO) effect in the chip sample of interest. With these new statistics, the decisions are jointly made by allowing the observation window length to be longer than two bit intervals. Simulation results demonstrate that detection reliability of the IEEE 802.15.4 BPSK receivers is significantly improved. Namely, at packet error rate (PER) of 1×10-3, the signal-to-noise ratio (SNR) gap between ideal coherent detection (perfect carrier reference phase and no CFO) with differential decoding and conventional optimal single differential coherent detection (SDCD) is filled by 2.1dB when the observation window length is set to 6bit intervals. Then, the benefit that less energy consumed by retransmissions is successfully achieved.

  • Generalized Krengel-Ivanov Sequences with Optimal Autocorrelation Magnitude

    Yong WANG  Wei SU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:11
      Page(s):
    1980-1983

    In this letter, we present a class of binary sequences with optimal autocorrelation magnitude. Compared with Krengel-Ivanov sequences, some proposed sequences have different autocorrelation distribution. This indicates those sequences would be new. As an application of constructed binary sequences, we derive a class of quaternary sequences of length 4p with autocorrelation magnitude equal to $2sqrt{2}$, which is lower than the autocorrelation magnitude equal to 4 of Chung-Han-Yang sequences given in 2011.

  • Hierarchical Tensor Manifold Modeling for Multi-Group Analysis

    Hideaki ISHIBASHI  Masayoshi ERA  Tetsuo FURUKAWA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1745-1755

    The aim of this work is to develop a method for the simultaneous analysis of multiple groups and their members based on hierarchical tensor manifold modeling. The method is particularly designed to analyze multiple teams, such as sports teams and business teams. The proposed method represents members' data using a nonlinear manifold for each team, and then these manifolds are further modeled using another nonlinear manifold in the model space. For this purpose, the method estimates the role of each member in the team, and discovers correspondences between members that play similar roles in different teams. The proposed method was applied to basketball league data, and it demonstrated the ability of knowledge discovery from players' statistics. We also demonstrated that the method could be used as a general tool for multi-level multi-group analysis by applying it to marketing data.

  • Complicated Superstable Periodic Orbits in a Simple Spiking Neuron Model with Rectangular Threshold Signal

    Yusuke MATSUOKA  

     
    LETTER-Nonlinear Problems

      Vol:
    E101-A No:11
      Page(s):
    1944-1948

    We studied complicated superstable periodic orbits (SSPOs) in a spiking neuron model with a rectangular threshold signal. The neuron exhibited SSPOs with various periods that changed dramatically when we varied the parameter space. Using a one-dimensional return map defined by the spike phase, we evaluated period changes and showed its complicated distribution. Finally, we constructed a test circuit to confirm the typical phenomena displayed by the mathematical model.

  • Single Image Haze Removal Using Hazy Particle Maps

    Geun-Jun KIM  Seungmin LEE  Bongsoon KANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1999-2002

    Hazes with various properties spread widely across flat areas with depth continuities and corner areas with depth discontinuities. Removing haze from a single hazy image is difficult due to its ill-posed nature. To solve this problem, this study proposes a modified hybrid median filter that performs a median filter to preserve the edges of flat areas and a hybrid median filter to preserve depth discontinuity corners. Recovered scene radiance, which is obtained by removing hazy particles, restores image visibility using adaptive nonlinear curves for dynamic range expansion. Using comparative studies and quantitative evaluations, this study shows that the proposed method achieves similar or better results than those of other state-of-the-art methods.

  • Experimental Evaluation of Maximum Achievable Efficiency for Multiple-Receiver Inductive Power Transfer Systems

    Reona SUGIYAMA  Quang-Thang DUONG  Minoru OKADA  

     
    PAPER-Analog Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1861-1868

    Optimal loads and maximum achievable efficiency for multiple-receiver inductive power transfer (IPT) system have been formulated by theoretical studies in literatures. This paper presents extended analysis on system behavior at optimal load condition and extensive S-parameter evaluation to validate the formulas. Our results confirm that at the optimal load condition, the system is in a resonance state; the impact of cross-coupling among receivers is completely mitigated; and the efficiency reaches its maximum expressed by an efficiency angle tangent, in an manner analogous to the well-known kQ-theory for single-receiver IPT. Our contributions do not lie in practical applications of multiple-receiver IPT but in establishing principles for design and benchmarking the system.

  • Theoretical Understanding of Some Conditional and Joint Biases in RC4 Stream Cipher

    Sonu JHA  Subhadeep BANIK  Takanori ISOBE  Toshihiro OHIGASHI  Santanu SARKAR  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:11
      Page(s):
    1869-1879

    In this paper we present proofs for the new biases in RC4 which were experimentally found and listed out (without theoretical justifications and proofs) in a paper by Vanhoef et al. in USENIX 2015. Their purpose was to exploit the vulnerabilities of RC4 in TLS using the set of new biases found by them. We also show (and prove) new results on couple of very strong biases residing in the joint distribution of three consecutive output bytes of the RC4 stream cipher. These biases provides completely new distinguisher for RC4 taking roughly O(224) samples to distinguish streams of RC4 from a uniformly random stream. We also provide a list of new results with proofs relating to some conditional biases in the keystreams of the RC4 stream cipher.

  • Air-Writing Recognition Based on Fusion Network for Learning Spatial and Temporal Features

    Buntueng YANA  Takao ONOYE  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1737-1744

    A fusion framework between CNN and RNN is proposed dedicatedly for air-writing recognition. By modeling the air-writing using both spatial and temporal features, the proposed network can learn more information than existing techniques. Performance of the proposed network is evaluated by using the alphabet and numeric datasets in the public database namely the 6DMG. Average accuracy of the proposed fusion network outperforms other techniques, i.e. 99.25% and 99.83% are observed in the alphabet gesture and the numeric gesture, respectively. Simplified structure of RNN is also proposed, which can attain about two folds speed-up of ordinary BLSTM network. It is also confirmed that only the distance between consecutive sampling points is enough to attain high recognition performance.

  • Fostering Real-Time Software Analysis by Leveraging Heterogeneous and Autonomous Software Repositories

    Chaman WIJESIRIWARDANA  Prasad WIMALARATNE  

     
    PAPER-Software Engineering

      Pubricized:
    2018/08/06
      Vol:
    E101-D No:11
      Page(s):
    2730-2743

    Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems. Despite having many tools to track and measure the data originated from such repositories, software practitioners often suffer from a scarcity of the techniques necessary to dynamically leverage software repositories to fulfill their complex information needs. For example, answering a question such as “What is the number of commits between two successful builds?” requires tiresome manual inspection of multiple repositories. As a solution, this paper presents a conceptual framework and a proof of concept visual query interface to satisfy distinct software quality related information needs of software practitioners. The data originated from repositories is integrated and analyzed to perform systematic investigations, which helps to uncover hidden relationships between software quality and trends of software evolution. This approach has several significant benefits such as the ability to perform real-time analyses, the ability to combine data from various software repositories and generate queries dynamically. The framework evaluated with 31 subjects by using a series of questions categorized into three software evolution scenarios. The evaluation results evidently show that our framework surpasses the state of the art tools in terms of correctness, time and usability.

  • Design and Implementation of SDN-Based Proactive Firewall System in Collaboration with Domain Name Resolution

    Hiroya IKARASHI  Yong JIN  Nariyoshi YAMAI  Naoya KITAGAWA  Kiyohiko OKAYAMA  

     
    PAPER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2633-2643

    Security facilities such as firewall system and IDS/IPS (Intrusion Detection System/Intrusion Prevention System) have become fundamental solutions against cyber threats. With the rapid change of cyber attack tactics, detail investigations like DPI (Deep Packet Inspection) and SPI (Stateful Packet Inspection) for incoming traffic become necessary while they also cause the decrease of network throughput. In this paper, we propose an SDN (Software Defined Network) - based proactive firewall system in collaboration with domain name resolution to solve the problem. The system consists of two firewall units (lightweight and normal) and a proper one will be assigned for checking the client of incoming traffic by the collaboration of SDN controller and internal authoritative DNS server. The internal authoritative DNS server obtains the client IP address using EDNS (Extension Mechanisms for DNS) Client Subnet Option from the external DNS full resolver during the name resolution stage and notifies the client IP address to the SDN controller. By checking the client IP address on the whitelist and blacklist, the SDN controller assigns a proper firewall unit for investigating the incoming traffic from the client. Consequently, the incoming traffic from a trusted client will be directed to the lightweight firewall unit while from others to the normal firewall unit. As a result, the incoming traffic can be distributed properly to the firewall units and the congestion can be mitigated. We implemented a prototype system and evaluated its performance in a local experimental network. Based on the results, we confirmed that the prototype system presented expected features and acceptable performance when there was no flooding attack. We also confirmed that the prototype system showed better performance than conventional firewall system under ICMP flooding attack.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

  • Simultaneous Wireless Information and Power Transfer Solutions for Energy-Harvesting Fairness in Cognitive Multicast Systems

    Pham-Viet TUAN  Insoo KOO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1988-1992

    In this letter, we consider the harvested-energy fairness problem in cognitive multicast systems with simultaneous wireless information and power transfer. In the cognitive multicast system, a cognitive transmitter with multi-antenna sends the same information to cognitive users in the presence of licensed users, and cognitive users can decode information and harvest energy with a power-splitting structure. The harvested-energy fairness problem is formulated and solved by using two proposed algorithms, which are based on semidefinite relaxation with majorization-minimization method, and sequential parametric convex approximation with feasible point pursuit technique, respectively. Finally, the performances of the proposed solutions and baseline schemes are verified by simulation results.

  • Critical Nodes Identification of Power Grids Based on Network Efficiency

    WenJie KANG  PeiDong ZHU  JieXin ZHANG  JunYang ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2018/07/27
      Vol:
    E101-D No:11
      Page(s):
    2762-2772

    Critical nodes identification is of great significance in protecting power grids. Network efficiency can be used as an evaluation index to identify the critical nodes and is an indicator to quantify how efficiently a network exchanges information and transmits energy. Since power grid is a heterogeneous network and can be decomposed into small functionally-independent grids, the concept of the Giant Component does not apply to power grids. In this paper, we first model the power grid as the directed graph and define the Giant Efficiency sub-Graph (GEsG). The GEsG is the functionally-independent unit of the network where electric energy can be transmitted from a generation node (i.e., power plants) to some demand nodes (i.e., transmission stations and distribution stations) via the shortest path. Secondly, we propose an algorithm to evaluate the importance of nodes by calculating their critical degree, results of which can be used to identify critical nodes in heterogeneous networks. Thirdly, we define node efficiency loss to verify the accuracy of critical nodes identification (CNI) algorithm and compare the results that GEsG and Giant Component are separately used as assessment criteria for computing the node efficiency loss. Experiments prove the accuracy and efficiency of our CNI algorithm and show that the GEsG can better reflect heterogeneous characteristics and power transmission of power grids than the Giant Component. Our investigation leads to a counterintuitive finding that the most important critical nodes may not be the generation nodes but some demand nodes.

  • A Low-Complexity and Fast Convergence Message Passing Receiver Based on Partial Codeword Transmission for SCMA Systems

    Xuewan ZHANG  Wenping GE  Xiong WU  Wenli DAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2259-2266

    Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.

  • Hierarchical Progressive Trust Model for Mismatch Removal under Both Rigid and Non-Rigid Transformations

    Songlin DU  Takeshi IKENAGA  

     
    PAPER-Image, Vision

      Vol:
    E101-A No:11
      Page(s):
    1786-1794

    Accurate visual correspondence is the foundation of many computer vision based applications. Since existing image matching algorithms generate mismatches inevitably, a reliable mismatch-removal algorithm is highly desired to remove mismatches and preserve true matches. This paper proposes a hierarchical progressive trust (HPT) model to solve this problem. The HPT model first adopts a “trust the most trustworthy ones” strategy to select anchor inliers in its bottom layer, and then progressively propagates the trust from bottom layer to other layers in a bottom-up way: 1) bottom layer verifies anchor inliers with the guidance of local features; 2) middle layers progressively estimate local transformations and perform local verifications; 3) top layer estimates a global transformation with an anchor-inliers-guided expectation maximization (EM) algorithm and performs global verifications. Experimental results show that the proposed HPT model achieves higher performance than state-of-the-art mismatch-removal methods under both rigid transformations and non-rigid deformations.

  • Optimal Design of Adaptive Intra Predictors Based on Sparsity Constraint

    Yukihiro BANDOH  Yuichi SAYAMA  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1795-1805

    It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.

  • Cube-Based Encryption-then-Compression System for Video Sequences

    Kosuke SHIMIZU  Taizo SUZUKI  Keisuke KAMEYAMA  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1815-1822

    We propose the cube-based perceptual encryption (C-PE), which consists of cube scrambling, cube rotation, cube negative/positive transformation, and cube color component shuffling, and describe its application to the encryption-then-compression (ETC) system of Motion JPEG (MJPEG). Especially, cube rotation replaces the blocks in the original frames with ones in not only the other frames but also the depth-wise cube sides (spatiotemporal sides) unlike conventional block-based perceptual encryption (B-PE). Since it makes intra-block observation more difficult and prevents unauthorized decryption from only a single frame, it is more robust than B-PE against attack methods without any decryption key. However, because the encrypted frames including the blocks from the spatiotemporal sides affect the MJPEG compression performance slightly, we also devise a version of C-PE with no spatiotemporal sides (NSS-C-PE) that hardly affects compression performance. C-PE makes the encrypted video sequence robust against the only single frame-based algorithmic brute force (ABF) attack with only 21 cubes. The experimental results show the compression efficiency and encryption robustness of the C-PE/NSS-C-PE-based ETC system. C-PE-based ETC system shows mixed results depending on videos, whereas NSS-C-PE-based ETC system shows that the BD-PSNR can be suppressed to about -0.03dB not depending on videos.

  • Gain Relaxation: A Solution to Overlooked Performance Degradation in Speech Recognition with Signal Enhancement

    Ryoji MIYAHARA  Akihiko SUGIYAMA  

     
    PAPER-Digital Signal Processing, Speech and Hearing

      Vol:
    E101-A No:11
      Page(s):
    1832-1840

    This paper proposes gain relaxation in signal enhancement designed for speech recognition. Gain relaxation selectively applies softer enhancement of a target signal to eliminate potential degradation in speech recognition caused by small undesirable distortion in the target signal components. The softer enhancement is a solution to overlooked performance degradation in signal enhancement combined with speech recognition which is encountered in commercial products with an unaware small local noise source. Evaluation of directional interference suppression with signals recorded by a commercial PC (personal computer) demonstrates that signal enhancement over the input is achieved without sacrificing the performance for clean speech.

2521-2540hit(20498hit)