The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2641-2660hit(20498hit)

  • Arc Duration and Dwell Time of Break Arcs Magnetically Blown-out in Nitrogen or Air in a 450VDC/10A Resistive Circuit

    Akinori ISHIHARA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E101-C No:9
      Page(s):
    699-702

    Electrical contacts are separated at constant speed and break arcs are generated in nitrogen or air in a 200V-450VDC/10A resistive circuit. The break arcs are extinguished by magnetic blow-out. Arc duration for the silver and copper contact pairs is investigated for each supply voltage. Following results are shown. The arc duration for Cu contacts in nitrogen is the shortest. For Cu contacts, the arc dwell time in air was considerably longer than that of nitrogen. For Ag contacts, the arc duration in nitrogen was almost the same as that in air.

  • An Improved Spread Clutter Estimated Canceller for Main-Lobe Clutter Suppression in Small-Aperture HFSWR

    Di YAO  Xin ZHANG  Qiang YANG  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:9
      Page(s):
    1575-1579

    In small-aperture high frequency surface wave radar, the main-lobe clutter all can be seen as a more severe space spread clutter under the influence of the smaller array aperture. It compromises the detection performance of moving vessels, especially when the target is submerged in the clutter. To tackle this issue, an improved spread clutter estimated canceller, combining spread clutter estimated canceller, adaptive selection strategy of the optimal training samples and rotating spatial beam method, is presented to suppress main-lobe clutter in both angle domain and range domain. According to the experimental results, the proposed algorithm is shown to have far superior clutter suppression performance based on the real data.

  • Compressive Phase Retrieval Realized by Combining Generalized Approximate Message Passing with Cartoon-Texture Model

    Jingjing SI  Jing XIANG  Yinbo CHENG  Kai LIU  

     
    LETTER-Image

      Vol:
    E101-A No:9
      Page(s):
    1608-1615

    Generalized approximate message passing (GAMP) can be applied to compressive phase retrieval (CPR) with excellent phase-transition behavior. In this paper, we introduced the cartoon-texture model into the denoising-based phase retrieval GAMP(D-prGAMP), and proposed a cartoon-texture model based D-prGAMP (C-T D-prGAMP) algorithm. Then, based on experiments and analyses on the variations of the performance of D-PrGAMP algorithms with iterations, we proposed a 2-stage D-prGAMP algorithm, which makes tradeoffs between the C-T D-prGAMP algorithm and general D-prGAMP algorithms. Finally, facing the non-convergence issues of D-prGAMP, we incorporated adaptive damping to 2-stage D-prGAMP, and proposed the adaptively damped 2-stage D-prGAMP (2-stage ADD-prGAMP) algorithm. Simulation results show that, runtime of 2-stage D-prGAMP is relatively equivalent to that of BM3D-prGAMP, but 2-stage D-prGAMP can achieve higher image reconstruction quality than BM3D-prGAMP. 2-stage ADD-prGAMP spends more reconstruction time than 2-stage D-prGAMP and BM3D-prGAMP. But, 2-stage ADD-prGAMP can achieve PSNRs 0.2∼3dB higher than those of 2-stage D-prGAMP and 0.3∼3.1dB higher than those of BM3D-prGAMP.

  • Analysis and Implementation of a QoS Optimization Method for Access Networks

    Ling ZHENG  Zhiliang QIU  Weitao PAN  Yibo MEI  Shiyong SUN  Zhiyi ZHANG  

     
    PAPER-Network System

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    1949-1960

    High-performance Network Over Coax, or HINOC for short, is a broadband access technology that can achieve bidirectional transmission for high-speed Internet service through a coaxial medium. In HINOC access networks, buffer management scheme can improve the fairness of buffer usage among different output ports and the overall loss performance. To provide different services to multiple priority classes while reducing the overall packet loss rate and ensuring fairness among the output ports, this study proposes a QoS optimization method for access networks. A backpressure-based queue threshold control scheme is used to minimize the weighted average packet loss rate among multiple priorities. A theoretical analysis is performed to examine the performance of the proposed scheme, and optimal system parameters are provided. Software simulation shows that the proposed method can improve the average packet loss rate by about 20% to 40% compared with existing buffer management schemes. Besides, FPGA evaluation reveals that the proposed method can be implemented in practical hardware and performs well in access networks.

  • On-Off Power Control with Low Complexity in D2D Underlaid Cellular Networks

    Tae-Won BAN  Bang Chul JUNG  

     
    PAPER-Network

      Pubricized:
    2018/03/20
      Vol:
    E101-B No:9
      Page(s):
    1961-1966

    We consider a device-to-device (D2D) underlaid cellular network where D2D communications are allowed to share the same radio spectrum with cellular uplink communications for improving spectral efficiency. However, to protect the cellular uplink communications, the interference level received at a base station (BS) from the D2D communications needs to be carefully maintained below a certain threshold, and thus the BS coordinates the transmit power of the D2D links. In this paper, we investigate on-off power control for the D2D links, which is known as a simple but effective technique due to its low signaling overhead. We first investigate the optimal on-off power control algorithm to maximize the sum-rate of the D2D links, while satisfying the interference constraint imposed by the BS. The computational complexity of the optimal algorithm drastically increases with D2D link number. Thus, we also propose an on-off power control algorithm to significantly reduce the computational complexity, compared to the optimal on-off power control algorithm. Extensive simulations validate that the proposed algorithm significantly reduces the computational complexity with a marginal sum-rate offset from the optimal algorithm.

  • Wide Angle Scanning Circular Polarized Meta-Structured Antenna Array

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2017-2023

    This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.

  • Exploring IA Feasibility in MIMO Interference Networks: Equalized and Non-Equalized Antennas Approach

    Weihua LIU  Zhenxiang GAO  Ying WANG  Zhongfang WANG  Yongming WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/03/20
      Vol:
    E101-B No:9
      Page(s):
    2047-2057

    For general multiple-input multiple-output (MIMO) interference networks, determining the feasibility conditions of interference alignment (IA) to achieve the maximum degree of freedom (DoF), is tantamount to accessing the maximum spatial resource of MIMO systems. In this paper, from the view of antenna configuration, we first explore the IA feasibility in the K-user MIMO interference channel (IC), G-cell MIMO interference broadcast channel (IBC) and interference multiple access channel (IMAC). We first give the concept of the equalized antenna, and all antenna configurations are divided into two categories, equalized antennas and non-equalized ones. The feasibility conditions of IA system with equalized antennas are derived, and the feasible and infeasible regions are provided. Furthermore, we study the correlations among IC, IBC and IMAC. Interestingly, the G-cell MIMO IBC and IMAC are two special ICs, and a systemic work on IA feasibility for these three interference channels is provided.

  • Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc

    Kai BO  Xue ZHOU  Guofu ZHAI  Mo CHEN  

     
    PAPER

      Vol:
    E101-C No:9
      Page(s):
    691-698

    The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.

  • Variational-Bayesian Single-Image Devignetting

    Motoharu SONOGASHIRA  Masaaki IIYAMA  Michihiko MINOH  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/06/18
      Vol:
    E101-D No:9
      Page(s):
    2368-2380

    Vignetting is a common type of image degradation that makes peripheral parts of an image darker than the central part. Single-image devignetting aims to remove undesirable vignetting from an image without resorting to calibration, thereby providing high-quality images required for a wide range of applications. Previous studies into single-image devignetting have focused on the estimation of vignetting functions under the assumption that degradation other than vignetting is negligible. However, noise in real-world observations remains unremoved after inversion of vignetting, and prevents stable estimation of vignetting functions, thereby resulting in low quality of restored images. In this paper, we introduce a methodology of image restoration based on variational Bayes (VB) to devignetting, aiming at high-quality devignetting in the presence of noise. Through VB inference, we jointly estimate a vignetting function and a latent image free from both vignetting and noise, using a general image prior for noise removal. Compared with state-of-the-art methods, the proposed VB approach to single-image devignetting maintains effectiveness in the presence of noise, as we demonstrate experimentally.

  • The Stable Roommates Problem with Unranked Entries

    Hiroaki SUTO  Aleksandar SHURBEVSKI  Hiroshi NAGAMOCHI  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1412-1419

    The family of stable matching problems have been well-studied across a wide field of research areas, including economics, mathematics and computer science. In general, an instance of a stable matching problem is given by a set of participants who have expressed their preferences of each other, and asks to find a “stable” matching, that is, a pairing of the participants such that no unpaired participants prefer each other to their assigned partners. In the case of the Stable Roommates Problem (SR), it is known that given an even number n of participants, there might not exist a stable matching that pairs all of the participants, but there exist efficient algorithms to determine if this is possible or not, and if it is possible, produce such a matching. Common extensions of SR allow for the participants' preference lists to be incomplete, or include indifference. Allowing indifference in turn, gives rise to different possible definitions of stability, super, strong, and weak stability. While instances asking for super and strongly stable matching can be efficiently solved even if preference lists are incomplete, the case of weak stability is NP-complete. We examine a restricted case of indifference, introducing the concept of unranked entries. For this type of instances, we show that the problem of finding a weakly stable matching remains NP-complete even if each participant has a complete preference list with at most two unranked entries, or is herself unranked for up to three other participants. On the other hand, for instances where there are m acceptable pairs and there are in total k unranked entries in all of the participants' preference lists, we propose an O(2kn2)-time and polynomial space algorithm that finds a stable matching, or determines that none exists in the given instance.

  • A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter

    Nobukazu TSUKIJI  Yasunori KOBORI  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2018/02/23
      Vol:
    E101-B No:9
      Page(s):
    1940-1948

    We propose a method to derive the loop gain from the open-loop and closed-loop output impedances in a dc-dc buck converter with voltage mode and current mode controls. This enables the loop gain to be measured without injecting a signal into the feedback loop, i.e. without breaking the feedback loop; hence the proposed method can be applied to the control circuits implemented on an IC. Our simulation and experiment show that the loop gain determined by the proposed method closely matches that yielded by the conventional method, which has to break the feedback loop. These results confirm that the proposed method can accurately estimate the phase margin.

  • Comfortable Intelligence for Evaluating Passenger Characteristics in Autonomous Wheelchairs

    Taishi SAWABE  Masayuki KANBARA  Norihiro HAGITA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1308-1316

    In recent years, autonomous driving technologies are being developed for vehicles and personal mobility devices including golf carts and autonomous wheelchairs for various use cases, not only outside areas but inside areas like shopping malls, hospitals and airpots. The main purpose of developing these autonomous vehicles is to avoid the traffic accidents caused by human errors, to assist people with walking, and to improve human comfort by relieving them from driving. Most relevant research focuses on the efficiency and safety of autonomous driving, however, in order to use by the widespread of people in the society, it is important to consider passenger comfort inside vehicles as well as safety and efficiency. Therefore, in this work, we emphasize the importance of considering passenger comfort in designing the control loop of autonomous navigation for the concept of comfortable intelligence in the future autonomous mobility. Moreover, passenger characteristics, in terms of ride comfort in an autonomous vehicle, have not been investigated with regard to safety and comfort, depending on each passenger's driving experience, habits, knowledge, personality, and preference. There are still few studies on the optimization of autonomous driving control reflecting passenger characteristics and different stress factors during the ride. In this study, passenger stress characteristics with different stress factors were objectively analyzed using physiological indices (heart rate and galvanic skin response sensors) during autonomous wheelchair usages. Two different experimental results from 12 participants suggest that there are always at least two types of passengers: one who experiences stress and the other who does not, depending on the stress factors considered. Moreover, with regard to the classification result for the stress reduction method, there are two types of passenger groups, for whom the solution method is, respectively, either effective or ineffective.

  • On LCD MRD Codes

    Minjia SHI  Daitao HUANG  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:9
      Page(s):
    1599-1602

    We investigate linear complementary dual (LCD) rank-metric codes in this paper. We construct a class of LCD generalized Gabidulin codes by a self-dual basis of an extension field over the base field. Moreover, a class of LCD MRD codes, which are obtained by Cartesian products of a generalized Gabidulin code, is constructed.

  • A Fused Continuous Floating-Point MAC on FPGA

    Min YUAN  Qianjian XING  Zhenguo MA  Feng YU  Yingke XU  

     
    LETTER-Circuit Theory

      Vol:
    E101-A No:9
      Page(s):
    1594-1598

    In this letter, we present a novel single-precision floating-point multiply-accumulator (FNA-MAC) to achieve lower hardware resource, reduced computing latency and improved computing accuracy for continuous dot product operations. By further fusing the normalization and alignment in the traditional FMA algorithm, the proposed architecture eliminates the first N-1 normalization and rounding operations for an N-point dot product, and preserves the precision of interim results in a significant bit size that is twice of that in the traditional methods. The normalization and rounding of the final result is processed at the cost of consuming an additional multiply-add operation. The simulation results show that the improvement in computational accuracy is significant. Meanwhile, when comparing to a recently published FMA design, the proposed FNA-MAC can reduce the slice look-up table/flip-flop resource and computing latency by a fact of 18%, 33.3%, respectively.

  • Coding Theoretic Construction of Quantum Ramp Secret Sharing

    Ryutaroh MATSUMOTO  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:8
      Page(s):
    1215-1222

    We show a construction of a quantum ramp secret sharing scheme from a nested pair of linear codes. Necessary and sufficient conditions for qualified sets and forbidden sets are given in terms of combinatorial properties of nested linear codes. An algebraic geometric construction for quantum secret sharing is also given.

  • Winding Ratio Design of Transformer in Equivalent Circuit of Circular Patch Array Absorber

    Ryosuke SUGA  Tomohiko NAKAMURA  Daisuke KITAHARA  Kiyomichi ARAKI  Osamu HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    651-654

    An equivalent circuit of a circular patch array absorber has been proposed, however the method to identify a winding ratio of a transformer in its circuit have never been reported. In this paper, it is indicated that the ratio is proportionate to the area ratio between patch and unit cell of the absorber, and the design method of the winding ratio is proposed. The winding ratio derived by the proposed method is agreed well with that by using electromagnetic simulator within 3% error. Moreover, the operating frequency and 15 dB bandwidth of the fabricated absorber designed by proposed method are agreed with those derived by the circuit simulation within 0.4% and 0.1% errors. Thus the validity of the proposed method is verified.

  • DOA Estimation of Quasi-Stationary Signals Exploiting Virtual Extension of Coprime Array Imbibing Difference and Sum Co-Array

    Tarek Hasan AL MAHMUD  Zhongfu YE  Kashif SHABIR  Yawar Ali SHEIKH  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1876-1883

    Using local time frames to treat non-stationary real world signals as stationary yields Quasi-Stationary Signals (QSS). In this paper, direction of arrival (DOA) estimation of uncorrelated non-circular QSS is analyzed by applying a novel technique to achieve larger consecutive lags using coprime array. A scheme of virtual extension of coprime array is proposed that exploits the difference and sum co-array which can increase consecutive co-array lags in remarkable number by using less number of sensors. In the proposed method, cross lags as well as self lags are exploited for virtual extension of co-arrays both for differences and sums. The method offers higher degrees of freedom (DOF) with a larger number of non-negative consecutive lags equal to MN+2M+1 by using only M+N-1 number of sensors where M and N are coprime with congenial interelement spacings. A larger covariance matrix can be achieved by performing covariance like computations with the Khatri-Rao (KR) subspace based approach which can operate in undetermined cases and even can deal with unknown noise covariances. This paper concentrates on only non-negative consecutive lags and subspace based method like Multiple Signal Classification (MUSIC) based approach has been executed for DOA estimation. Hence, the proposed method, named Virtual Extension of Coprime Array imbibing Difference and Sum (VECADS), in this work is promising to create larger covariance matrix with higher DOF for high resolution DOA estimation. The coprime distribution yielded by the proposed approach can yield higher resolution DOA estimation while avoiding the mutual coupling effect. Simulation results demonstrate its effectiveness in terms of the accuracy of DOA estimation even with tightly aligned sources using fewer sensors compared with other techniques like prototype coprime, conventional coprime, Coprime Array with Displaced Subarrays (CADiS), CADiS after Coprime Array with Compressed Inter-element Spacing (CACIS) and nested array seizing only difference co-array.

  • Power Allocation for Zero-Forcing Strategy in Two-User X Channel

    Xianglan JIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1916-1922

    In an X channel, multiple transmitters transmit independent signals to different receivers. Separate zero-forcing (ZF) precoding is used at transmitters in the two-user X channel with two transmitters and two receivers. A closed-form optimal power allocation is derived under the sum power constraint (SPC) to maximize the squared minimum distance. The ZF strategy with optimal power allocation achieves a significant signal to noise ratio (SNR) improvement. Under the individual power constraint (IPC), a suboptimal power allocation that achieves better performance compared to the existing algorithms is also proposed.

  • Effects of Finite Superstrate and Asymmetrical Ground on High Gain Superstrate Antenna

    Jae-Gon LEE  Taek-Sun KWON  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1884-1890

    In this paper, we present the effects of finite superstrates and asymmetrical grounds on the performance of high gain superstrate antennas. First, when the source of a superstrate antenna is located at an edge of a ground plane, that is, an asymmetric ground plane, the gain of the superstrate antenna can be made to match the gain of the superstrate antenna with a symmetrical ground plane using the PEC (E-plane asymmetric) or the AMC wall (H-plane asymmetric) near the edge. Second, the gain of the superstrate antenna, which has a ground plane with dimensions sufficiently close to infinite, is found to be roughly proportional to the reflection magnitude of a partially reflective surface (PRS). It is found that when the square ground size has a finite dimension of two wavelengths or less, the reflection magnitude of the PRS should have the optimum value for achieving maximum gain. Finally, the gain of the superstrate antenna is studied when the ground plane differs from a PRS. For the above three cases, the performances of the superstrate antenna are verified and compared by analysis, full-wave simulation, and measurement.

  • Randomness Test to Solve Discrete Fourier Transform Test Problems

    Atsushi IWASAKI  Ken UMENO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:8
      Page(s):
    1204-1214

    The Discrete Fourier Transform Test (DFTT) is a randomness test in NIST SP800-22. However, to date, the theoretical reference distribution of the DFTT statistic has not been derived, which is problematic. We propose a new test using power spectrum variance as the test statistic whose reference distribution can be derived theoretically. Note that the purpose of both the DFTT and the proposed test is to detect periodic features. Experimental results demonstrate that the proposed test has stronger detection power than the DFTT and that it test can be used even for short sequences.

2641-2660hit(20498hit)