The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2501-2520hit(20498hit)

  • Selectively Iterative Detection Scheme Based on the Residual Power in MIMO-OFDM

    Jong-Kwang KIM  Seung-Jin CHOI  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2445-2452

    Multiple input multiple output with orthogonal frequency division multiplexing (MIMO-OFDM) is used in various parts of wireless communication systems. Because the MIMO-OFDM system simultaneously transmits parallel data streams and each receive antenna receives all data streams at one time, the detection ability of the receiver is very important. Among the detection schemes suitable for OFDM, maximum likelihood (ML) detection has optimal performance, but its complexity is so high that it is infeasible. Linear detection schemes such as zero-forcing (ZF) and minimum mean square error (MMSE) have low complexity, but also low performance. Among non-linear detection schemes, the near-ML detection which is the sphere detection (SD) or the QR decomposition with M algorithm (QRD-M) also has optimal performance but the complexity of SD and QRD-M detection is also too high. Other non-linear detection schemes like successive interference cancellation (SIC) detection have low complexity. However, the performance of SIC detection is lower than other non-linear detection schemes. In this paper, selectively iterative detection is proposed for MIMO-OFDM system; it offers low complexity and good performance.

  • Interference-Aware Dynamic Channel Assignment Scheme for Enterprise Small-Cell Networks

    Se-Jin KIM  Sang-Hyun BAE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2453-2461

    This paper proposes a novel dynamic channel assignment scheme named interference-aware dynamic channel assignment (IA-DCA) for the downlink of enterprise small-cell networks (ESNs) that employ orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In ESNs, a lot of small-cell access points (SAPs) are densely deployed in a building and thus small-cell user equipments (SUEs) have more serious co-tier interference from neighbor SAPs than the conventional small-cell network. Therefore, in the proposed IA-DCA scheme, a local gateway (LGW) dynamically assigns different numbers of subchannel groups to SUEs through their serving SAPs according to the given traffic load and interference information. Through simulation results, we show that the proposed IA-DCA scheme outperforms other dynamic channel assignment schemes based on graph coloring algorithm in terms of the mean SUE capacity, fairness, and mean SAP channel utilization.

  • Equivalent-Circuit Model with Retarded Electromagnetic Coupling for Meta-Atoms of Wired Metallic Spheres

    Katsuya OHISHI  Takashi HISAKADO  Tohlu MATSUSHIMA  Osami WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:12
      Page(s):
    923-930

    This paper describes the equivalent-circuit model of a metamaterial composed of conducting spheres and wires. This model involves electromagnetic coupling between the conductors, with retardation. The lumped-parameter equivalent circuit, which imports retardation to the electromagnetic coupling, is developed in this paper from Maxwell's equation. Using the equivalent-circuit model, we clarify the relationship between the retardation and radiation loss; we theoretically demonstrate that the electromagnetic retardation in the near-field represents the radiation loss of the meta-atom in the far-field. Furthermore, this paper focuses on the retarded electromagnetic coupling between two meta-atoms; we estimate the changes in the resonant frequencies and the losses due to the distance between the two coupled meta-atoms. It is established that the dependence characteristics are significantly affected by electromagnetic retardation.

  • Low-Power Fifth-Order Butterworth OTA-C Low-Pass Filter with an Impedance Scaler for Portable ECG Applications

    Shuenn-Yuh LEE  Cheng-Pin WANG  Chuan-Yu SUN  Po-Hao CHENG  Yuan-Sun CHU  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    942-952

    This study proposes a multiple-output differential-input operational transconductance amplifier-C (MODI OTA-C) filter with an impedance scaler to detect cardiac activity. A ladder-type fifth-orderButterworth low-pass filter with a large time constant and low noise is implemented to reduce coefficient sensitivity and address signal distortion. Moreover, linearized MODI OTA structures with reduced transconductance and impedance scaler circuits for noise reduction are used to achieve a wide dynamic range (DR). The OTA-based circuit is operated in the subthreshold region at a supply voltage of 1 V to reduce the power consumption of the wearable device in long-term use. Experimental results of the filter with a bandwidth of 250 Hz reveal that DR is 57.6 dB, and the harmonic distortion components are below -59 dB. The power consumption of the filter, which is fabricated through a TSMC 0.18 µm CMOS process, is lower than 390 nW, and the active area is 0.135 mm2.

  • An 11.37-to-14.8 GHz Low Phase Noise CMOS VCO in Cooperation with a Fast AFC Unit Achieving -195.3 dBc/Hz FoMT

    Youming ZHANG  Kaiye BAO  Xusheng TANG  Fengyi HUANG  Nan JIANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    963-966

    This paper describes a broadband low phase noise VCO implemented in 0.13 µm CMOS process. A 1-bit switched varactor and a 4-bit capacitor array are adopted in cooperation with the automatic frequency calibration (AFC) circuit to lower the VCO tuning gain (KVCO), with a measured AFC time of 6 µs. Several noise reduction techniques are exploited to minimize the phase noise of the VCO. Measurement results show the VCO generates a high frequency range from 11.37 GHz to 14.8 GHz with a KVCO of less than 270 MHz/V. The prototype exhibits a phase noise of -114.6 dBc/Hz @ 1 MHz at 14.67 GHz carrier frequency and draws 10.5 mA current from a 1.2 V supply. The achieved figure-of-merits (FoM=-186.9dBc/Hz, FoMT=-195.3dBc/Hz) favorably compares with the state-of-the-art.

  • Parallel Precomputation with Input Value Prediction for Model Predictive Control Systems

    Satoshi KAWAKAMI  Takatsugu ONO  Toshiyuki OHTSUKA  Koji INOUE  

     
    PAPER-Real-time Systems

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2864-2877

    We propose a parallel precomputation method for real-time model predictive control. The key idea is to use predicted input values produced by model predictive control to solve an optimal control problem in advance. It is well known that control systems are not suitable for multi- or many-core processors because feedback-loop control systems are inherently based on sequential operations. However, since the proposed method does not rely on conventional thread-/data-level parallelism, it can be easily applied to such control systems without changing the algorithm in applications. A practical evaluation using three real-world model predictive control system simulation programs demonstrates drastic performance improvement without degrading control quality offered by the proposed method.

  • The Panpositionable Pancyclicity of Locally Twisted Cubes

    Hon-Chan CHEN  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2902-2907

    In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.

  • Cycle Embedding in Generalized Recursive Circulant Graphs

    Shyue-Ming TANG  Yue-Li WANG  Chien-Yi LI  Jou-Ming CHANG  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2916-2921

    Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.

  • Enhancing Job Scheduling on Inter-Rackscale Datacenters with Free-Space Optical Links

    Yao HU  Michihiro KOIBUCHI  

     
    PAPER-Information networks

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2922-2932

    Datacenter growth in traffic and scale is driving innovations in constructing tightly-coupled facilities with low-latency communication for different specific applications. A famous custom design is rackscale (RS) computing by gathering key server resource components into different resource pools. Such a resource-pooling implementation requires a new software stack to manage resource discovery, resource allocation and data communication. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context as an evolution of the original RS architecture the inter-rackscale (IRS) architecture, which disaggregates hardware components into different racks according to their own areas, has been proposed. The heart of IRS is to use a limited number of free-space optics (FSO) channels for wireless connections between different resource racks, via which selected pairs of racks can communicate directly and thus resource-pooling requirements are met without additional software management. In this study we evaluate the influences of FSO links on IRS networks. Evaluation results show that FSO links reduce average communication hop count for user jobs, which is close to the best possible value of 2 hops and thus provides comparable benchmark performance to that of the counterpart RS architecture. In addition, if four FSO terminals per rack are allowed, the CPU/SSD (GPU) interconnection latency is reduced by 25.99% over Fat-tree and by 67.14% over 2-D Torus. We also present the advantage of an FSO-equipped IRS system in average turnaround time of dispatched jobs for given sets of benchmark workloads.

  • A Low-Complexity Path Delay Searching Method in Sparse Channel Estimation for OFDM Systems

    Kee-Hoon KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2297-2303

    By exploiting the inherent sparsity of wireless channels, the channel estimation in an orthogonal frequency division multiplexing (OFDM) system can be cast as a compressed sensing (CS) problem to estimate the channel more accurately. Practically, matching pursuit algorithms such as orthogonal matching pursuit (OMP) are used, where path delays of the channel is guessed based on correlation values for every quantized delay with residual. This full search approach requires a predefined grid of delays with high resolution, which induces the high computational complexity because correlation values with residual at a huge number of grid points should be calculated. Meanwhile, the correlation values with high resolution can be obtained by interpolation between the correlation values at a low resolution grid. Also, the interpolation can be implemented with a low pass filter (LPF). By using this fact, in this paper we substantially reduce the computational complexity to calculate the correlation values in channel estimation using CS.

  • On the Optimal Configuration of Grouping-Based Framed Slotted ALOHA

    Young-Beom KIM  

     
    LETTER-Information Network

      Pubricized:
    2018/08/08
      Vol:
    E101-D No:11
      Page(s):
    2823-2826

    In this letter, we consider several optimization problems associated with the configuration of grouping-based framed slotted ALOHA protocols. Closed-form formulas for determining the optimal values of system parameters such as the process termination time and confidence levels for partitioned groups are presented. Further, we address the maximum group size required for meaningful grouping gain and the effectiveness of the grouping technique in light of signaling overhead.

  • High-Performance Super-Resolution via Patch-Based Deep Neural Network for Real-Time Implementation

    Reo AOKI  Kousuke IMAMURA  Akihiro HIRANO  Yoshio MATSUDA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/08/20
      Vol:
    E101-D No:11
      Page(s):
    2808-2817

    Recently, Super-resolution convolutional neural network (SRCNN) is widely known as a state of the art method for achieving single-image super resolution. However, performance problems such as jaggy and ringing artifacts exist in SRCNN. Moreover, in order to realize a real-time upconverting system for high-resolution video streams such as 4K/8K 60 fps, problems such as processing delay and implementation cost remain. In the present paper, we propose high-performance super-resolution via patch-based deep neural network (SR-PDNN) rather than a convolutional neural network (CNN). Despite the very simple end-to-end learning system, the SR-PDNN achieves higher performance than the conventional CNN-based approach. In addition, this system is suitable for ultra-low-delay video processing by hardware implementation using an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA).

  • A New Discrete Gaussian Sampler over Orthogonal Lattices

    Dianyan XIAO  Yang YU  Jingguo BI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:11
      Page(s):
    1880-1887

    Discrete Gaussian is a cornerstone of many lattice-based cryptographic constructions. Aiming at the orthogonal lattice of a vector, we propose a discrete Gaussian rejection sampling algorithm, by modifying the dynamic programming process for subset sum problems. Within O(nq2) time, our algorithm generates a distribution statistically indistinguishable from discrete Gaussian at width s>ω(log n). Moreover, we apply our sampling algorithm to general high-dimensional dense lattices, and orthogonal lattices of matrices $matAinZ_q^{O(1) imes n}$. Compared with previous polynomial-time discrete Gaussian samplers, our algorithm does not rely on the short basis.

  • Studying the Cost and Effectiveness of OSS Quality Assessment Models: An Experience Report of Fujitsu QNET

    Yasutaka KAMEI  Takahiro MATSUMOTO  Kazuhiro YAMASHITA  Naoyasu UBAYASHI  Takashi IWASAKI  Shuichi TAKAYAMA  

     
    PAPER-Software Engineering

      Pubricized:
    2018/08/08
      Vol:
    E101-D No:11
      Page(s):
    2744-2753

    Nowadays, open source software (OSS) systems are adopted by proprietary software projects. To reduce the risk of using problematic OSS systems (e.g., causing system crashes), it is important for proprietary software projects to assess OSS systems in advance. Therefore, OSS quality assessment models are studied to obtain information regarding the quality of OSS systems. Although the OSS quality assessment models are partially validated using a small number of case studies, to the best of our knowledge, there are few studies that empirically report how industrial projects actually use OSS quality assessment models in their own development process. In this study, we empirically evaluate the cost and effectiveness of OSS quality assessment models at Fujitsu Kyushu Network Technologies Limited (Fujitsu QNET). To conduct the empirical study, we collect datasets from (a) 120 OSS projects that Fujitsu QNET's projects actually used and (b) 10 problematic OSS projects that caused major problems in the projects. We find that (1) it takes average and median times of 51 and 49 minutes, respectively, to gather all assessment metrics per OSS project and (2) there is a possibility that we can filter problematic OSS systems by using the threshold derived from a pool of assessment metrics. Fujitsu QNET's developers agree that our results lead to improvements in Fujitsu QNET's OSS assessment process. We believe that our work significantly contributes to the empirical knowledge about applying OSS assessment techniques to industrial projects.

  • A Summer-Embedded Sense Amplifier for High-Speed Decision Feedback Equalizer

    Il-Min YI  Naoki MIURA  Hiroyuki FUKUYAMA  Hideyuki NOSAKA  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E101-A No:11
      Page(s):
    1949-1951

    A summer-embedded sense amplifier (SE SA) is proposed to reduce feedback loop delay (TFB) in a decision feedback equalizer (DFE). In the SE SA, the position of the ISI compensator is changed from the latch input to the latch output, and hence the TFB is reduced. The simulated DFE achieves 32Gb/s and 66fJ/b with a 1-V 65-nm CMOS process.

  • Transistor Characteristics of Single Crystalline C8-BTBT Grown in Coated Liquid Crystal Solution on Photo-Alignment Films

    Risa TAKEDA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    884-887

    We examined single crystal growth of benzothienobenzothiophene-based organic semiconductors by solution coating method using liquid crystal and investigated its electrical characteristics. As the results, we revealed that the averaged mobility in the saturation region reached 2.08 cm2/Vs along crystalline b-axis, and 1.08 cm2/Vs along crystalline a-axis.

  • A Low-Power and GHz-Band LC-DCO Directly Drives 10mm On-Chip Clock Distribution Line in 0.18µm CMOS

    Masahiro ICHIHASHI  Haruichi KANAYA  

     
    PAPER-Circuit Theory

      Vol:
    E101-A No:11
      Page(s):
    1907-1914

    High-speed clock distribution design is becoming increasingly difficult and challenging task due to the huge power consumption and jitter caused by large capacitive loading and multiple repeater stages. This paper proposes a novel low-power, GHz-band bufferless LC-DCO which directly drives 10 mm on-chip clock distribution line for high-speed serial links. The shared LC-tank structure between DCO frequency tuning capacitor and clock distribution line mitigate the frequency sensitivity and makes an energy-efficient, area-saving, high-speed operation possible. The test-chip is implemented under TSMC 0.18µm, 1-poly, 6-metal CMOS technology and the core area of proposed LC-DCO is only 270×280µm2. The full-chip post layout simulation results show 2.54GHz oscillation frequency, 2.2mA current consumption and phase noise of -123dBc/Hz at 1MHz offset.

  • Automatically Generating Malware Analysis Reports Using Sandbox Logs

    Bo SUN  Akinori FUJINO  Tatsuya MORI  Tao BAN  Takeshi TAKAHASHI  Daisuke INOUE  

     
    PAPER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2622-2632

    Analyzing a malware sample requires much more time and cost than creating it. To understand the behavior of a given malware sample, security analysts often make use of API call logs collected by the dynamic malware analysis tools such as a sandbox. As the amount of the log generated for a malware sample could become tremendously large, inspecting the log requires a time-consuming effort. Meanwhile, antivirus vendors usually publish malware analysis reports (vendor reports) on their websites. These malware analysis reports are the results of careful analysis done by security experts. The problem is that even though there are such analyzed examples for malware samples, associating the vendor reports with the sandbox logs is difficult. This makes security analysts not able to retrieve useful information described in vendor reports. To address this issue, we developed a system called AMAR-Generator that aims to automate the generation of malware analysis reports based on sandbox logs by making use of existing vendor reports. Aiming at a convenient assistant tool for security analysts, our system employs techniques including template matching, API behavior mapping, and malicious behavior database to produce concise human-readable reports that describe the malicious behaviors of malware programs. Through the performance evaluation, we first demonstrate that AMAR-Generator can generate human-readable reports that can be used by a security analyst as the first step of the malware analysis. We also demonstrate that AMAR-Generator can identify the malicious behaviors that are conducted by malware from the sandbox logs; the detection rates are up to 96.74%, 100%, and 74.87% on the sandbox logs collected in 2013, 2014, and 2015, respectively. We also present that it can detect malicious behaviors from unknown types of sandbox logs.

  • Key Parameter Estimation for Pulse Radar Signal Intercepted by Non-Cooperative Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1934-1939

    Nyquist folding receiver (NYFR) is a novel reconnaissance receiving architecture and it can realize wideband receiving with small amount of equipment. As a tradeoff of non-cooperative wideband receiving, the NYFR output will add an unknown key parameter that is called Nyquist zone (NZ) index. In this letter, we concentrate on the NZ index estimation of the NYFR output. Focusing on the basic pulse radar signals, the constant frequency signal, the binary phase coded signal and the linear frequency modulation signal are considered. The matching component function is proposed to estimate the NZ indexes of the NYFR outputs without the prior information of the signal modulation type. In addition, the relations between the matching component function and the parameters of the NYFR are discussed. Simulation results demonstrate the efficacy of the proposed method.

  • Understanding the Inconsistency between Behaviors and Descriptions of Mobile Apps

    Takuya WATANABE  Mitsuaki AKIYAMA  Tetsuya SAKAI  Hironori WASHIZAKI  Tatsuya MORI  

     
    PAPER-Mobile Application and Web Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2584-2599

    Permission warnings and privacy policy enforcement are widely used to inform mobile app users of privacy threats. These mechanisms disclose information about use of privacy-sensitive resources such as user location or contact list. However, it has been reported that very few users pay attention to these mechanisms during installation. Instead, a user may focus on a more user-friendly source of information: text description, which is written by a developer who has an incentive to attract user attention. When a user searches for an app in a marketplace, his/her query keywords are generally searched on text descriptions of mobile apps. Then, users review the search results, often by reading the text descriptions; i.e., text descriptions are associated with user expectation. Given these observations, this paper aims to address the following research question: What are the primary reasons that text descriptions of mobile apps fail to refer to the use of privacy-sensitive resources? To answer the research question, we performed empirical large-scale study using a huge volume of apps with our ACODE (Analyzing COde and DEscription) framework, which combines static code analysis and text analysis. We developed light-weight techniques so that we can handle hundred of thousands of distinct text descriptions. We note that our text analysis technique does not require manually labeled descriptions; hence, it enables us to conduct a large-scale measurement study without requiring expensive labeling tasks. Our analysis of 210,000 apps, including free and paid, and multilingual text descriptions collected from official and third-party Android marketplaces revealed four primary factors that are associated with the inconsistencies between text descriptions and the use of privacy-sensitive resources: (1) existence of app building services/frameworks that tend to add API permissions/code unnecessarily, (2) existence of prolific developers who publish many applications that unnecessarily install permissions and code, (3) existence of secondary functions that tend to be unmentioned, and (4) existence of third-party libraries that access to the privacy-sensitive resources. We believe that these findings will be useful for improving users' awareness of privacy on mobile software distribution platforms.

2501-2520hit(20498hit)