The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2681-2700hit(20498hit)

  • Understanding Support of Causal Relationship between Events in Historical Learning

    Tomoko KOJIRI  Fumito NATE  Keitaro TOKUTAKE  

     
    PAPER-Educational Technology

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2072-2081

    In historical learning, to grasp the causal relationship between historical events and to understand factors that bring about important events are significant for fostering the historical thinking. However, some students are not able to find historical events that have causal relationships. The view of observing the historical events is different among individuals, so it is not appropriate to define the historical events that have causal relationships and impose students to remember them. The students need to understand the definition of the causal relationships and find the historical events that satisfy the definition according to their viewpoints. The objective of this paper is to develop a support system for understanding the meaning of a causal relationship and creating causal relation graphs that represent the causal relationships between historical events. When historical events have a causal relationship, a state change caused by one event becomes the cause of the other event. To consider these state changes is critically important to connect historical events. This paper proposes steps for considering causal relationships between historical events by arranging the state changes of historical people along with them. It also develops the system that supports students to create the causal relation graph according to the state changes. In our system, firstly, the interface for arranging state changes of historical people according to the historical events is given. Then, the interface for drawing the causal relation graph of historical events is provided in which state changes are automatically indicated on the created links in the causal relation graph. By observing the indicated state changes on the links, students are able to check by themselves whether their causal relation graphs correctly represent the causal relationships between historical events.

  • Predicting Taxi Destination by Regularized RNN with SDZ

    Lei ZHANG  Guoxing ZHANG  Zhizheng LIANG  Qingfu FAN  Yadong LI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2141-2144

    The traditional Markov prediction methods of the taxi destination rely only on the previous 2 to 3 GPS points. They negelect long-term dependencies within a taxi trajectory. We adopt a Recurrent Neural Network (RNN) to explore the long-term dependencies to predict the taxi destination as the multiple hidden layers of RNN can store these dependencies. However, the hidden layers of RNN are very sensitive to small perturbations to reduce the prediction accuracy when the amount of taxi trajectories is increasing. In order to improve the prediction accuracy of taxi destination and reduce the training time, we embed suprisal-driven zoneout (SDZ) to RNN, hence a taxi destination prediction method by regularized RNN with SDZ (TDPRS). SDZ can not only improve the robustness of TDPRS, but also reduce the training time by adopting partial update of parameters instead of a full update. Experiments with a Porto taxi trajectory data show that TDPRS improves the prediction accuracy by 12% compared to RNN prediction method in literature[4]. At the same time, the prediction time is reduced by 7%.

  • Hyperparameter-Free Sparse Signal Reconstruction Approaches to Time Delay Estimation

    Hyung-Rae PARK  Jian LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/01/31
      Vol:
    E101-B No:8
      Page(s):
    1809-1819

    In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.

  • Nonlinear Phase-Shift Cancellation by Taking the Geometric Mean of WDM-Signal Phase-Conjugate Pair

    Takahisa KODAMA  Akira MIZUTORI  Takayuki KOBAYASHI  Takayuki MIZUNO  Masafumi KOGA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/02/09
      Vol:
    E101-B No:8
      Page(s):
    1845-1852

    This paper investigates approaches that can cancel nonlinear phase noise effectively for the phase-conjugate pair diversity transmission of 16-QAM WDM signals through multi-core fiber. The geometric mean is introduced for the combination of the phase-conjugate pair. A numerical simulation suggests that span-by-span chromatic dispersion compensation is more effective at cancelling phase noise in long distance transmission than lumped compensation at the receiver. Simulations suggest the span-wise compensation described herein yields Q-value enhancement of 7.8 and 6.8dB for CD values of 10 and 20.6ps/nm/km, respectively, whereas the lumped compensation equivalent attains only 3.5dB. A 1050km recirculating loop experiment confirmed a Q-value enhancement of 4.1dB for 20.6ps/nm/km, span-wise compensation transmission.

  • Data Hiding in Spatial Color Images on Smartphones by Adaptive R-G-B LSB Replacement

    Haeyoung LEE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/04/25
      Vol:
    E101-D No:8
      Page(s):
    2163-2167

    This paper presents an adaptive least-significant-bit (LSB) steganography for spatial color images on smartphones. For each red, green, and blue color component, the combinations of All-4bit, One-4bit+Two-2bit, and Two-3bit+One-2bit LSB replacements are proposed for content-adaptivity and natural histograms. The high capacity of 8.4bpp with the average peak signal noise ratio (PSNR) 43.7db and fast processing times on smartphones are also demonstrated

  • Adaptive Beamforming Based on Compressed Sensing with Gain/Phase Uncertainties

    Bin HU  Xiaochuan WU  Xin ZHANG  Qiang YANG  Di YAO  Weibo DENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:8
      Page(s):
    1257-1262

    A new method for adaptive digital beamforming technique with compressed sensing (CS) for sparse receiving arrays with gain/phase uncertainties is presented. Because of the sparsity of the arriving signals, CS theory can be adopted to sample and recover receiving signals with less data. But due to the existence of the gain/phase uncertainties, the sparse representation of the signal is not optimal. In order to eliminating the influence of the gain/phase uncertainties to the sparse representation, most present study focus on calibrating the gain/phase uncertainties first. To overcome the effect of the gain/phase uncertainties, a new dictionary optimization method based on the total least squares (TLS) algorithm is proposed in this paper. We transfer the array signal receiving model with the gain/phase uncertainties into an EIV model, treating the gain/phase uncertainties effect as an additive error matrix. The method we proposed in this paper reconstructs the data by estimating the sparse coefficients using CS signal reconstruction algorithm and using TLS method toupdate error matrix with gain/phase uncertainties. Simulation results show that the sparse regularized total least squares algorithm can recover the receiving signals better with the effect of gain/phase uncertainties. Then adaptive digital beamforming algorithms are adopted to form antenna beam using the recovered data.

  • Autonomous Decentralised Systems and Global Social Systems Open Access

    Colin G. HARRISON  

     
    INVITED PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1753-1759

    As the capabilities and costs of Artificial Intelligence (AI) and of sensors (IoT) continue to improve, the concept of a “control system” can evolve beyond the operation of a discrete technical system based on numerical information and enter the realm of large-scale systems with both technical and social characteristics based on both numerical and unstructured information. This evolution has particular significance for applying the principles of Autonomous Decentralised Systems (ADS) [1]. This article considers the possible roles for ADS in complex technical and social systems extending up to global scales.

  • Decentralized Event-Triggered Control of Composite Systems Using M-Matrices

    Kenichi FUKUDA  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:8
      Page(s):
    1156-1161

    A composite system consists of many subsystems, which have interconnections with other subsystems. For such a system, in general, we utilize decentralized control, where each subsystem is controlled by a local controller. On the other hand, event-triggered control is one of useful approaches to reduce the amount of communications between a controller and a plant. In the event-triggered control, an event triggering mechanism (ETM) monitors the information of the plant, and determines the time to transmit the data. In this paper, we propose a design of ETMs for the decentralized event-triggered control of nonlinear composite systems using an M-matrix. We consider the composite system where there is an ETM for each subsystem, and ETMs monitor local states of the corresponding subsystems. Each ETM is designed so that the composite system is stabilized. Moreover, we deal with the case of linear systems. Finally, we perform simulation to show that the proposed triggering rules are useful for decentralized control.

  • GNSS Correction Using Altitude Map and Its Integration with Pedestrian Dead Reckoning

    Yuyang HUANG  Li-Ta HSU  Yanlei GU  Shunsuke KAMIJO  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:8
      Page(s):
    1245-1256

    Accurate pedestrian navigation remains a challenge in urban environments. GNSS receiver behaves poorly because the reflection and blockage of the GNSS signals by buildings or other obstacles. Integration of GNSS positioning and Pedestrian Dead Reckoning (PDR) could provide a more smooth navigation trajectory. However, the integration system cannot present the satisfied performance if GNSS positioning has large error. This situation often happens in the urban scenario. This paper focuses on improving the accuracy of the pedestrian navigation in urban environment using a proposed altitude map aided GNSS positioning method. Firstly, we use consistency check algorithm, which is similar to receiver autonomous integrity monitoring (RAIM) fault detection, to distinguish healthy and multipath contaminated measurements. Afterwards, the erroneous signals are corrected with the help of an altitude map. We called the proposed method altitude map aided GNSS. After correcting the erroneous satellite signals, the positioning mean error could be reduced from 17 meters to 12 meters. Usually, good performance for integration system needs accurately calculated GNSS accuracy value. However, the conventional GNSS accuracy calculation is not reliable in urban canyon. In this paper, the altitude map is also utilized to calculate the GNSS localization accuracy in order to indicate the reliability of the estimated position solution. The altitude map aided GNSS and accuracy are used in the integration with PDR system in order to provide more accurate and continuous positioning results. With the help of the proposed GNSS accuracy, the integration system could achieve 6.5 meters horizontal positioning accuracy in urban environment.

  • Autonomous, Decentralized and Privacy-Enabled Data Preparation for Evidence-Based Medicine with Brain Aneurysm as a Phenotype

    Khalid Mahmood MALIK  Hisham KANAAN  Vian SABEEH  Ghaus MALIK  

     
    PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1787-1797

    To enable the vision of precision medicine, evidence-based medicine is the key element. Understanding the natural history of complex diseases like brain aneurysm and particularly investigating the evidences of its rupture risk factors relies on the existence of semantic-enabled data preparation technology to conduct clinical trials, survival analysis and outcome prediction. For personalized medicine in the field of neurological diseases, it is very important that multiple health organizations coordinate and cooperate to conduct evidence based observational studies. Without the means of automating the process of privacy and semantic-enabled data preparation to conduct observational studies at intra-organizational level would require months to manually prepare the data. Therefore, this paper proposes a semantic and privacy enabled, multi-party data preparation architecture and a four-tiered semantic similarity algorithm. Evaluation shows that proposed algorithm achieves a precision of 79%, high recall at 83% and F-measure of 81%.

  • Frequency-Dependent LOD-FDTD Method in Cylindrical Coordinates

    Jun SHIBAYAMA  Tatsuyuki HARA  Masato ITO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    637-639

    The locally one-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates is extended to a frequency-dependent version. The fundamental scheme is utilized to perform matrix-operator-free formulations in the right-hand sides. For the analysis of surface plasmon polaritons propagating along a plasmonic grating, the computation time is significantly reduced to less than 10%, compared with the explicit cylindrical FDTD method.

  • Tighter Generalization Bounds for Matrix Completion Via Factorization Into Constrained Matrices

    Ken-ichiro MORIDOMI  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    1997-2004

    We prove generalization error bounds of classes of low-rank matrices with some norm constraints for collaborative filtering tasks. Our bounds are tighter, compared to known bounds using rank or the related quantity only, by taking the additional L1 and L∞ constraints into account. Also, we show that our bounds on the Rademacher complexity of the classes are optimal.

  • On the DS2 Bound for Forney's Generalized Decoding Using Non-Binary Linear Block Codes

    Toshihiro NIINOMI  Hideki YAGI  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:8
      Page(s):
    1223-1234

    Recently, Hof et al. extended the type-2 Duman and Salehi (DS2) bound to generalized decoding, which was introduced by Forney, with decision criterion FR. From this bound, they derived two significant bounds. One is the Shulman-Feder bound for generalized decoding (GD) with the binary-input output-symmetric channel. The other is an upper bound for an ensemble of linear block codes, by applying the average complete weight distribution directly to the DS2 bound for GD. For the Shulman-Feder bound for GD, the authors derived a condition under which an upper bound is minimized at an intermediate step and show that this condition yields a new bound which is tighter than Hof et al.'s bound. In this paper, we first extend this result for non-binary linear block codes used over a class of symmetric channels called the regular channel. Next, we derive a new tighter bound for an ensemble of linear block codes, which is based on the average weight distribution.

  • Construction of Spontaneous Emotion Corpus from Indonesian TV Talk Shows and Its Application on Multimodal Emotion Recognition

    Nurul LUBIS  Dessi LESTARI  Sakriani SAKTI  Ayu PURWARIANTI  Satoshi NAKAMURA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/05/10
      Vol:
    E101-D No:8
      Page(s):
    2092-2100

    As interaction between human and computer continues to develop to the most natural form possible, it becomes increasingly urgent to incorporate emotion in the equation. This paper describes a step toward extending the research on emotion recognition to Indonesian. The field continues to develop, yet exploration of the subject in Indonesian is still lacking. In particular, this paper highlights two contributions: (1) the construction of the first emotional audio-visual database in Indonesian, and (2) the first multimodal emotion recognizer in Indonesian, built from the aforementioned corpus. In constructing the corpus, we aim at natural emotions that are corresponding to real life occurrences. However, the collection of emotional corpora is notably labor intensive and expensive. To diminish the cost, we collect the emotional data from television programs recordings, eliminating the need of an elaborate recording set up and experienced participants. In particular, we choose television talk shows due to its natural conversational content, yielding spontaneous emotion occurrences. To cover a broad range of emotions, we collected three episodes in different genres: politics, humanity, and entertainment. In this paper, we report points of analysis of the data and annotations. The acquisition of the emotion corpus serves as a foundation in further research on emotion. Subsequently, in the experiment, we employ the support vector machine (SVM) algorithm to model the emotions in the collected data. We perform multimodal emotion recognition utilizing the predictions of three modalities: acoustic, semantic, and visual. When compared to the unimodal result, in the multimodal feature combination, we attain identical accuracy for the arousal at 92.6%, and a significant improvement for the valence classification task at 93.8%. We hope to continue this work and move towards a finer-grain, more precise quantification of emotion.

  • Revealing of the Underlying Mechanism of Different Node Centralities Based on Oscillation Dynamics on Networks

    Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/02/01
      Vol:
    E101-B No:8
      Page(s):
    1820-1832

    In recent years, with the rapid development of the Internet and cloud computing, an enormous amount of information is exchanged on various social networking services. In order to handle and maintain such a mountain of information properly by limited resources in the network, it is very important to comprehend the dynamics for propagation of information or activity on the social network. One of many indices used by social network analysis which investigates the network structure is “node centrality”. A common characteristic of conventional node centralities is that it depends on the topological structure of network and the value of node centrality does not change unless the topology changes. The network dynamics is generated by interaction between users whose strength is asymmetric in general. Network structure reflecting the asymmetric interaction between users is modeled by a directed graph, and it is described by an asymmetric matrix in matrix-based network model. In this paper, we showed an oscillation model for describing dynamics on networks generated from a certain kind of asymmetric interaction between nodes by using a symmetric matrix. Moreover, we propose a new extended index of well-known two node centralities based on the oscillation model. In addition, we show that the proposed index can describe various aspect of node centrality that considers not only the topological structure of the network, but also asymmetry of links, the distribution of source node of activity, and temporal evolution of activity propagation by properly assigning the weight of each link. The proposed model is regarded as the fundamental framework for different node centralities.

  • A Reactive Management System for Reliable Power Supply in a Building Microgrid with Vehicle-to-Grid Interaction

    Shoko KIMURA  Yoshihiko SUSUKI  Atsushi ISHIGAME  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:8
      Page(s):
    1172-1184

    We address a BEMS (Building Energy Management System) to guarantee reliability of electric-power supply in dynamic uncertain environments. The building microgrid as the target of BEMS has multiple distributed power sources including a photo-voltaic power system and Electric-Vehicle (EV). EV is regarded as an autonomously-moving battery due to the original means of transportation and is hence a cause of dynamic uncertainty of the building microgrid. The main objective of synthesis of BEMS in this paper is to guarantee the continuous supply of power to the most critical load in a building microgrid and to realize the power supply to the other loads according to a ranking of load importance. We synthesize the BEMS as a reactive control system that monitors changes of dynamic uncertain environment of the microgrid including departure and arrival of an EV, and determines a route of power supply to the most critical load. Also, we conduct numerical experiments of the reactive BEMS using models of power flows in the building and of charging states of the batteries. The experiments are incorporated with data measured in a practical office building and demonstration project of EMS at Osaka, Japan. We show that the BEMS works for extending the time duration of continuous power supply to the most critical load.

  • An On-The-Fly Jitter Suppression Technique for Plain-CMOS-Logic-Based Timing Verniers: Dynamic Power Compensation with the Extensions of Digitally Variable Delay Lines

    Nobutaro SHIBATA  Mitsuo NAKAMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E101-A No:8
      Page(s):
    1185-1196

    Timing vernier (i.e., digital-to-time converter) is a key component of the pin-electronics circuit board installed in automated digital-VLSI test equipment, and it is used to create fine delays of less than one-cycle time of a clock signal. This paper presents a new on-the-fly (timing-) jitter suppression technique which makes it possible to use low-power plain-CMOS-logic-based timing verniers. Using a power-compensation line installed at the poststage of the digitally variable delay line, we make every pulse (used as a timing signal) consume a fixed amount of electric energy independent of the required delay amount. Since the power load of intrapowerlines is kept constantly, the jitter increase in the situation of changing the required delay amount on the fly is suppressed. On the basis of the concept, a 10-ns span, 125-MHz timing-vernier macro was designed and fabricated with a CMOS process for logic VLSIs. Every macro installed in a real-time timing-signal generator VLSI achieved the required timing resolution of 31.25ps with a linearity error within 15ps. The on-the-fly jitter was successfully suppressed to a random jitter level (<26ps p-p).

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • Phase Sensitive Amplifier Using Periodically Poled LiNbO3 Waveguides and Their Applications Open Access

    Masaki ASOBE  Takeshi UMEKI  Osamu TADANAGA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    586-593

    Recent advances in phase-sensitive amplifiers (PSAs) using periodically poled LiNbO3 are reviewed. Their principles of operation and distinct features are described. Applications in optical communication are studied in terms of the inline operation and amplification of a sophisticated modulation format. Challenges for the future are also discussed.

  • A Low-Complexity Signal Detection Approach in Uplink Massive MIMO Systems

    Zhuojun LIANG  Chunhui DING  Guanghui HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1115-1119

    A low-complexity signal detection approach based on the Kaczmarz algorithm (KA) is proposed to iteratively realize minimum mean square error (MMSE) detection for uplink massive multiple-input multiple-output (MIMO) systems. While KA is used for straightforward matrix inversion, the MMSE detection requires the computation of the Gram matrix with high complexity. In order to avoid the Gram matrix computation, an equivalent augmented matrix is applied to KA-based MMSE detection. Moreover, promising initial estimation and an approximate method to compute soft-output information are utilized to further accelerate the convergence rate and reduce the complexity. Simulation results demonstrate that the proposed approach outperforms the recently proposed Neumann series, conjugate gradient, and Gauss-Seidel methods in complexity and error-rate performance. Meanwhile, the FPGA implementation results confirm that our proposed method can efficiently compute the approximate inverse with low complexity.

2681-2700hit(20498hit)