The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

10281-10300hit(20498hit)

  • Image Adaptive Incremental Subfield Coding for Plasma Display Panels

    Myung Jin PARK  Hyoun Soo PARK  Young Hwan KIM  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2100-2104

    In this letter, we propose a new approach to incremental coding of the subfield codes for plasma display panels (PDPs). The proposed approach suppresses the halftone noise of the PDPs, while completely eliminating false contour noise, as do existing incremental subfield codes, by selecting an optimal incremental subfield code adaptively for a given input image. The proposed method maps the problem of selecting the optimal incremental subfield code onto a special-case shortest path problem. Results of experiment using 109 sample images illustrated that the proposed method improved the average peak signal-to-noise ratio by 4.4-6.2 dB in halftone noise compared with existing incremental subfield coding methods.

  • A Learning Algorithm of Boosting Kernel Discriminant Analysis for Pattern Recognition

    Shinji KITA  Seiichi OZAWA  Satoshi MAEKAWA  Shigeo ABE  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E90-D No:11
      Page(s):
    1853-1863

    In this paper, we present a new method to enhance classification performance of a multiple classifier system by combining a boosting technique called AdaBoost.M2 and Kernel Discriminant Analysis (KDA). To reduce the dependency between classifier outputs and to speed up the learning, each classifier is trained in a different feature space, which is obtained by applying KDA to a small set of hard-to-classify training samples. The training of the system is conducted based on AdaBoost.M2, and the classifiers are implemented by Radial Basis Function networks. To perform KDA at every boosting round in a realistic time scale, a new kernel selection method based on the class separability measure is proposed. Furthermore, a new criterion of the training convergence is also proposed to acquire good classification performance with fewer boosting rounds. To evaluate the proposed method, several experiments are carried out using standard evaluation datasets. The experimental results demonstrate that the proposed method can select an optimal kernel parameter more efficiently than the conventional cross-validation method, and that the training of boosting classifiers is terminated with a fairly small number of rounds to attain good classification accuracy. For multi-class classification problems, the proposed method outperforms both Boosting Linear Discriminant Analysis (BLDA) and Radial-Basis Function Network (RBFN) with regard to the classification accuracy. On the other hand, the performance evaluation for 2-class problems shows that the advantage of the proposed BKDA against BLDA and RBFN depends on the datasets.

  • Multiresolution-Based Texture Adaptive Algorithm for High-Quality Deinterlacing

    Gwo Giun LEE  He-Yuan LIN  Drew Wei-Chi SU  Ming-Jiun WANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1821-1830

    This paper introduces a texture analysis mechanism utilizing multiresolution technique to reduce false motion detection and hence thoroughly improve the interpolation results for high-quality deinterlacing. Conventional motion-adaptive deinterlacing algorithm selects from inter-field and intra-field interpolations according to motion. Accurate determination of motion information is essential for this purpose. Fine textures, having high local pixel variation, tend to cause false detection of motion. Based on hierarchical wavelet analysis, this algorithm provides much better perceptual visual quality and considerably higher PSNR than other motion adaptive deinterlacers as shown. In addition, a recursive 3-field motion detection algorithm is also proposed to achieve better performance than the traditional 2-field motion detection algorithm with little memory overhead.

  • Defect Detection of TFT-LCD Image Using Adapted Contrast Sensitivity Function and Wavelet Transform

    Jong-Hwan OH  Woo-Seob KIM  Chan-Ho HAN  Kil-Houm PARK  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2131-2135

    The thin film transistor liquid crystal display (TFT-LCD) image has nonuniform brightness, which is a major difficulty in finding the Mura defect region. To facilitate Mura segmentation, globally widely varying background signal must be flattened and then Mura signal must be enhanced. In this paper, Mura signal enhancement and background-signal-flattening methods using wavelet coefficient processing are proposed. The wavelet approximation coefficients are used for background-signal flattening, while wavelet detail coefficients are employed to magnify the Mura signal on the basis of an adapted contrast sensitivity function (CSF). Then, for the enhanced image, trimodal thresholding segmentation technique and a false-region elimination method based on the human visual system (HVS) are employed for reliable Mura segmentation. The experimental results show that the proposed algorithms produce promising results and can be applied to automated inspection systems for finding Muras in a TFT-LCD image.

  • Security Analysis of an ID-Based Key Agreement for Peer Group Communication

    Duc-Liem VO  Kwangjo KIM  

     
    LETTER-Information Security

      Vol:
    E90-A No:11
      Page(s):
    2624-2625

    Pairing based cryptography has been researched intensively due to its beneficial properties. In 2005, Wu et al. [3] proposed an identity-based key agreement for peer group communication from pairings. In this letter, we propose attacks on their scheme, by which the group fails to agree upon a common communication key.

  • Speech Enhancement Based on Perceptually Comfortable Residual Noise

    Jong Won SHIN  Joon-Hyuk CHANG  Nam Soo KIM  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E90-B No:11
      Page(s):
    3323-3326

    In this letter, we propose a novel approach to speech enhancement, which incorporates a new criterion based on residual noise shaping. In the proposed approach, our goal is to make the residual noise perceptually comfortable instead of making it less audible. A predetermined `comfort noise' is provided as a target for the spectral shaping. Based on some assumptions, the resulting spectral gain function turns out to be a slight modification of the Wiener filter while requiring very low computational complexity. Subjective listening test shows that the proposed algorithm outperforms the conventional spectral enhancement technique based on soft decision and the noise suppression implemented in IS-893 Selectable Mode Vocoder.

  • Contrast Enhancement in Liquid Crystal Displays by Adaptive Modification of Analog Gamma Reference Voltages

    Seung-Woo LEE  

     
    PAPER

      Vol:
    E90-C No:11
      Page(s):
    2083-2087

    In this paper, I propose dynamic gamma control (DGC) as a new contrast enhancement technology for liquid crystal displays. Unlike conventional technologies involving the manipulation of digital image data, DGC modifies analog gamma reference voltages in accordance with the image data distribution. A digital gamma buffer (DGB) and a new system architecture were developed for DGC implementation. Experimental results show that DGC can increase the contrast ratio of 5 images twofold on average.

  • On the Construction of an Antidictionary with Linear Complexity Using the Suffix Tree

    Takahiro OTA  Hiroyoshi MORITA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E90-A No:11
      Page(s):
    2533-2539

    The antidictionary of a string is the set of all words of minimal length that never appear in this string. Antidictionaries are in particular useful for source coding. We present a fast and memory-efficient algorithm to construct an antidictionary using a suffix tree. It is proved that the complexity of this algorithm is linear in space and time, and its effectiveness is demonstrated by simulation results.

  • Subjective Evaluation Based on Analysis of Correlation between Physical Properties and Visualization of Various Motion Blurs on LCDs

    Yuzo HISATAKE  Hideki ITO  Yasushi KAWATA  Akio MURAYAMA  

     
    INVITED PAPER

      Vol:
    E90-C No:11
      Page(s):
    2112-2118

    We analyzed the correlation between three kinds of visualization of the motion blurs (colour of blurs, luminance of the blur and sharpness of object images) and physical properties in regard to image properties and panel characteristics. We also performed subjective evaluations to specify optimal or allowable level of motion blurring with various images on one CRT display and four types of LCDs with various characteristics.

  • An Optimal Share Transfer Problem on Secret Sharing Storage Systems

    Toshiyuki MIYAMOTO  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E90-A No:11
      Page(s):
    2458-2464

    We have been developing a secure and reliable distributed storage system, which uses a secret sharing scheme. In order to efficiently store data in the system, this paper introduces an optimal share transfer problem, and proves it to be, generally, NP-hard. It is also shown that the problem can be resolved into a Steiner tree problem. Finally, through computational experiments we perform the comparison of heuristic algorithms for the Steiner tree problem.

  • A Novel Single Carrier Space-Time Block-Coded CDMA System with Iterative Receiver

    Der-Feng TSENG  Wei-Yu LAI  

     
    PAPER-CDMA

      Vol:
    E90-A No:11
      Page(s):
    2369-2376

    In this paper, we employ time-reversal space-time block coding (TR-STBC) in single-carrier direct sequence code-division multiple access (DS-CDMA) block transmission in the presence of multiple access interference (MAI) as well as intersymbol interference (ISI), which is subject to fairly long delay spread. We introduce the transmission rate improvement by capitalizing on the assignment of additional spreading codes to each user so as to expand the cardinality of space-time code matrix with no sacrifice of diversity order. Given perfect channel state information at the receiver, a simple linear frequency-domain interference suppression scheme on a basis of symbol-by-symbol processing is developed under certain circumstances. A "turbo principle" receiver is facilitated by exploiting the serially concatenated structure at the transmitter to further enhance system performance. Simulation results justify the efficacy of our proposed system and also present performance comparisons with some existing systems in terms of bit error rate (BER).

  • A Practical Routing and MAC Framework for Maximum Lifetime Sensor Telemetry

    Ozgur ERCETIN  Ozgur GURBUZ  Kerem BULBUL  Ertugrul CIFTCIOGLU  Aylin AKSU  

     
    PAPER-Network

      Vol:
    E90-B No:11
      Page(s):
    3146-3157

    The recent progress in sensor and wireless communication technologies has enabled the design and implementation of new applications such as sensor telemetry which is the use of wireless sensors to gather fine-grained information from products, people and places. In this work, we consider a realistic telemetry application in which an area is periodically monitored by a sensor network which gathers data from equally spaced sample points. The objective is to maximize the lifetime of the network by jointly selecting the sensing nodes, the node transmission powers and the route to the base station from each sensing node. We develop an optimization-based algorithm OPT-RE and a low complexity algorithm SP-RE for this purpose and analyze their dynamics through extensive numerical studies. Our results indicate that SP-RE is a promising algorithm which has comparable performance to that of the more computationally intensive OPT-RE algorithm. The energy consumption is significantly affected by the channel access method, and in this paper, we also compare the effects of the collision free TDMA and contention based CSMA/CA methods. We propose practical enhancements to CSMA/CA so that the energy consumption due to collisions is reduced. Our simulation results indicate that with the proposed enhancements contention based channel access can provide comparable performance to that of the collision free methods.

  • On Robust Approximate Feedback Linearization with Triangular and Feedforward Forms

    Ho-Lim CHOI  Jong-Tae LIM  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:11
      Page(s):
    2620-2623

    In this letter, we consider a class of approximately feedback linearized systems that contain both triangular and feedforward forms. With a utilization of the transformation scaling factor, we analytically show that the considered system can be globally exponentially stabilized, globally bounded, or locally stabilized depending on the shapes of triangular and feedforward forms. Our new method broadens a class of nonlinear systems under consideration over the existing results.

  • Ultra-Wideband Time-of-Arrival and Angle-of-Arrival Estimation Using a Signal Model Based on Measurements

    Naohiko IWAKIRI  Takehiko KOBAYASHI  

     
    PAPER-UWB

      Vol:
    E90-A No:11
      Page(s):
    2345-2353

    This paper presents an ultra wideband (UWB) channel sounding scheme with a technique for estimating time of arrival (TOA) and angle of arrival (AOA) using measurement signals. Since the power spectrum over the UWB bandwidth can be measured in advance, we propose a signal model using the measurement power spectrum to design the proper UWB signals model. This signal model is more similar to measurement signals than the flat spectrum model which is an ideal model. If more than three waves impinge on a receiver, we must determine the proper grouping of the elements of TOA vector and AOA vector. It is difficult to determine the grouping using only measurement signals because of many degradation factors. We also propose pairing the elements of TOA vector and that of AOA vector using correlation method based on measurement signals and the proposed signal model. This technique is available for more than the case of three paths if pairing the estimated TOAs and AOAs of measurement signals is not accurately determined. We evaluated the proposed techniques for a vector network analyzer (VNA) with a three-dimensional virtual antenna array.

  • Controllability Measure of Piecewise Affine Systems and Its Applications to the Luminescence Bacterium

    Daijiroh SUGIYAMA  Jun-ichi IMURA  

     
    PAPER

      Vol:
    E90-A No:11
      Page(s):
    2472-2477

    This paper proposes a notion of a controllability measure of discrete-time piecewise affine systems, which is a natural extension of the controllability gramian of linear systems. Although this measure is calculated in a probabilistic way, it may be applied to control of biological systems for providing a policy to experiments for pharmaceutical developments. Thus an application to gene regulatory control of luminescence in the marine bacterium modeled by the piecewise affine system is discussed in this paper.

  • Broadband MIMO Communication Systems Using Spatio-Temporal Processing in Transmitter and Receiver Sides

    Tetsuki TANIGUCHI  Hoang Huy PHAM  Nam Xuan TRAN  Yoshio KARASAWA  

     
    PAPER-MIMO

      Vol:
    E90-A No:11
      Page(s):
    2431-2438

    This paper presents a mathematically simple method of maximum SINR (Signal to Interference plus Noise Ratio) design of broadband MIMO (Multiple Input Multiple Output) communication systems adopting TDL (Tapped Delay Line) structure for spatio-temporal processing in both transmitter and receiver sides. The weight vectors in both ends are determined alternately, optimizing one side by fixing the other, and this operation is repeated until the SINR converges. The performance of MIMO systems using the proposed approach is investigated through computer simulations, and it is demonstrated that, though it requires high computational cost, the TDL structure brings high ability to mitigate the influence of frequency selective fading, particularly when the duration of the delay profile is long. Moreover, experimental results show that the equable distribution of the resources (weights and delay units) to both arrays is better choice than the concentration of them to one side of the transmitter or receiver.

  • Analysis of Second-Order Modes of Linear Discrete-Time Systems under Bounded-Real Transformations

    Shunsuke KOSHITA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E90-A No:11
      Page(s):
    2510-2515

    This paper discusses the behavior of the second-order modes (Hankel singular values) of linear discrete-time systems under bounded-real transformations, where the transformations are given by arbitrary transfer functions with magnitude bounded by unity. Our main result reveals that the values of the second-order modes are decreased under any of the above-mentioned transformations. This result is the generalization of the theory of Mullis and Roberts, who proved that the second-order modes are invariant under any allpass transformation, i.e. any lossless bounded-real transformation. We derive our main result by describing the controllability/observability Gramians of transformed systems with the help of the discrete-time bounded-real lemma.

  • Improvement of Measurement Method for Luminance Distribution of Electron Beam Spot in Color Display Tubes

    Naoki SHIRAMATSU  

     
    PAPER

      Vol:
    E90-C No:11
      Page(s):
    2094-2099

    A method for measuring the luminance distribution of an electron beam spot was described, which is fundamental to evaluate the resolution of a color display tube. First, to achieve high sensitivity and wide dynamic range identical to those of visual inspection, we proposed the use of an ICCD camera for imaging and two levels of sensitivity. With that method, we were able to measure the luminance distribution of an electron beam spot over a range of currents that extends from the extremely weak cathode current region to large current that correspond to the peak luminance. Specifically, we were able to measure the entire distribution shape from the base to the peak for beam spots in the cathode current range from 20 µA to 300 µA, while compensating the absolute luminance level. Second, a reconstruction algorithm of entire beam distribution from the shape of the masked part of the beam was also proposed, in which shift error is compensated to reduce the variance in measurement results caused by jitter noise in the conventional image processing method. That algorithm improves the reproducibility of repeated measurements. Specifically, a function for estimating the actual shift from the first-order moment of the image was incorporated into the spot shape reconstruction algorithm, resulting in a reduction of the standard deviation for repeated measurements of the horizontal beam spot diameter at 5% intensity from 0.02 mm to 0.005 mm.

  • A New Ordered Decision Feedback Equalization Algorithm for Spatial Multiplexing Systems in MIMO Channel

    Wenjie JIANG  Yusuke ASAI  Takeshi ONIZAWA  Satoru AIKAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E90-A No:11
      Page(s):
    2546-2555

    In rich scattering environments, multiple antenna systems designed to accomplish spatial multiplexing have enormous potential of lifting the capacity of corresponding multiple input multiple output channels. In this paper, we present a new low complexity algorithm for decision feedback equalization detector in the SM scheme. The basic idea is to reduce the joint optimization problem to separate optimization problems to achieve better performance-complexity tradeoffs. Concretely, we separately optimize the detection order and the detector filters so that the complexity of the entire signal detection task is reduced. The new order search rule approximates the optimal Bell Labs layered space time (BLAST) approach from a geometrical perspective, and the detector filters are derived using a Cholesky based QR decomposition. The new algorithm is able to switch from zero forcing to minimum mean square error without additional operations and the computational effort is a small fraction of that in the optimal BLAST algorithm. Despite its low complexity, the error performance of new detector closely approximates that of the standard BLAST.

  • Error Concealment Technique of Satellite Imagery Transmission through Information Hiding

    Hae-Yeoun LEE  Dong-Hyuck IM  Heung-Kyu LEE  

     
    LETTER-Application Information Security

      Vol:
    E90-D No:11
      Page(s):
    1881-1884

    Imperfect transmission of satellite imagery results in the loss of image lines. This paper proposes a novel error concealment technique using LSB-based watermarking. We generate block description information and insert it into the LSB bit plane of the image. Missing lines after transmission are restored by extracting this block description information. Simulation results show outstanding performance of the proposed technique.

10281-10300hit(20498hit)