The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1321-1340hit(20498hit)

  • Autonomous Relay Device Placement Algorithm for Avoiding Cascading Failure in D2D-Based Social Networking Service

    Hanami YOKOI  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2021/02/17
      Vol:
    E104-D No:5
      Page(s):
    597-605

    In this paper, in order to avoid the cascading failure by increasing the number of links in the physical network in D2D-based SNS, we propose an autonomous device placement algorithm. In this method, some relay devices are placed so as to increase the number of links in the physical network. Here, relay devices can be used only for relaying data and those are not SNS users. For example, unmanned aerial vehicles (UAV) with D2D communication capability and base stations with D2D communication capability are used as the relay devices. In the proposed method, at first, an optimization problem for minimizing node resilience which is a performance metric in order to place relay devices. Then, we investigate how relay devices should be placed based on some approximate optimal solutions. From this investigation, we propose an autonomous relay device placement in the physical network. In our proposed algorithm, relay devices can be placed without the complete information on network topology. We evaluate the performance of the proposed method with simulation, and investigate the effectiveness of the proposed method. From numerical examples, we show the effectiveness of our proposed algorithm.

  • Efficient Hardware Accelerator for Compressed Sparse Deep Neural Network

    Hao XIAO  Kaikai ZHAO  Guangzhu LIU  

     
    LETTER-Computer System

      Pubricized:
    2021/02/19
      Vol:
    E104-D No:5
      Page(s):
    772-775

    This work presents a DNN accelerator architecture specifically designed for performing efficient inference on compressed and sparse DNN models. Leveraging the data sparsity, a runtime processing scheme is proposed to deal with the encoded weights and activations directly in the compressed domain without decompressing. Furthermore, a new data flow is proposed to facilitate the reusage of input activations across the fully-connected (FC) layers. The proposed design is implemented and verified using the Xilinx Virtex-7 FPGA. Experimental results show it achieves 1.99×, 1.95× faster and 20.38×, 3.04× more energy efficient than CPU and mGPU platforms, respectively, running AlexNet.

  • Extending the Measurement Angle of a Gaze Estimation Method Using an Eye Model Expressed by a Revolution about the Optical Axis of the Eye

    Takashi NAGAMATSU  Mamoru HIROE  Hisashi ARAI  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2021/02/04
      Vol:
    E104-D No:5
      Page(s):
    729-740

    An eye model expressed by a revolution about the optical axis of the eye is one of the most accurate models for use in a 3D gaze estimation method. The measurement range of the previous gaze estimation method that uses two cameras based on the eye model is limited by the larger of the two angles between the gaze and the optical axes of two cameras. The previous method cannot calculate the gaze when exceeding a certain limit of the rotation angle of the eye. In this paper, we show the characteristics of reflections on the surface of the eye from two light sources, when the eye rotates. Then, we propose a method that extends the rotation angle of the eye for a 3D gaze estimation based on this model. The proposed method uses reflections that were not used in the previous method. We developed an experimental gaze tracking system for a wide projector screen and experimentally validated the proposed method with 20 participants. The result shows that the proposed method can measure the gaze of more number of people with increased accuracy compared with the previous method.

  • Noncontact Monitoring of Heartbeat and Movements during Sleep Using a Pair of Millimeter-Wave Ultra-Wideband Radar Systems Open Access

    Takuya SAKAMOTO  Sohei MITANI  Toru SATO  

     
    PAPER-Sensing

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    463-471

    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight.

  • Evaluation of Temporal Characteristics of Olfactory Displays with Different Structures Open Access

    Masaaki ISEKI  Takamichi NAKAMOTO  

     
    PAPER-Human Communications

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    744-750

    An olfactory display is a device to present smells. Temporal characteristics of three types of olfactory displays such as one based upon high-speed switching of solenoid valves, desktop-type one based on SAW atomizer and wearable-type one based on SAW atomizer were evaluated using three odorants with different volatilities. The sensory test revealed that the olfactory displays based on SAW atomizer had the presentation speeds faster than that of solenoid valves switching. Especially, the wearable one had an excellent temporal characteristic. These results largely depend on the difference in the odor delivery method. The data obtained in this study provides basic knowledge when we make olfactory contents.

  • Optimization and Hole Interpolation of 2-D Sparse Arrays for Accurate Direction-of-Arrival Estimation

    Shogo NAKAMURA  Sho IWAZAKI  Koichi ICHIGE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/10/21
      Vol:
    E104-B No:4
      Page(s):
    401-409

    This paper presents a method to optimize 2-D sparse array configurations along with a technique to interpolate holes to accurately estimate the direction of arrival (DOA). Conventional 2-D sparse arrays are often defined using a closed-form representation and have the property that they can create hole-free difference co-arrays that can estimate DOAs of incident signals that outnumber the physical elements. However, this property restricts the array configuration to a limited structure and results in a significant mutual coupling effect between consecutive sensors. In this paper, we introduce an optimization-based method for designing 2-D sparse arrays that enhances flexibility of array configuration as well as DOA estimation accuracy. We also propose a method to interpolate holes in 2-D co-arrays by nuclear norm minimization (NNM) that permits holes and to extend array aperture to further enhance DOA estimation accuracy. The performance of the proposed optimum arrays is evaluated through numerical examples.

  • A Robust Semidefinite Source Localization TDOA/FDOA Method with Sensor Position Uncertainties

    Zhengfeng GU  Hongying TANG  Xiaobing YUAN  

     
    PAPER-Sensing

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    472-480

    Source localization in a wireless sensor network (WSN) is sensitive to the sensors' positions. In practice, due to mobility, the receivers' positions may be known inaccurately, leading to non-negligible degradation in source localization estimation performance. The goal of this paper is to develop a semidefinite programming (SDP) method using time-difference-of arrival (TDOA) and frequency-difference-of-arrival (FDOA) by taking the sensor position uncertainties into account. Specifically, we transform the commonly used maximum likelihood estimator (MLE) problem into a convex optimization problem to obtain an initial estimation. To reduce the coupling between position and velocity estimator, we also propose an iterative method to obtain the velocity and position, by using weighted least squares (WLS) method and SDP method, respectively. Simulations show that the method can approach the Cramér-Rao lower bound (CRLB) under both mild and high noise levels.

  • AirMatch: An Automated Mosaicing System with Video Preprocessing Engine for Multiple Aerial Feeds

    Nida RASHEED  Waqar S. QURESHI  Shoab A. KHAN  Manshoor A. NAQVI  Eisa ALANAZI  

     
    PAPER-Software System

      Pubricized:
    2021/01/14
      Vol:
    E104-D No:4
      Page(s):
    490-499

    Surveillance through aerial systems is in place for years. Such systems are expensive, and a large fleet is in operation around the world without upgrades. These systems have low resolution and multiple analog cameras on-board, with Digital Video Recorders (DVRs) at the control station. Generated digital videos have multi-scenes from multi-feeds embedded in a single video stream and lack video stabilization. Replacing on-board analog cameras with the latest digital counterparts requires huge investment. These videos require stabilization and other automated video analysis prepossessing steps before passing it to the mosaicing algorithm. Available mosaicing software are not tailored to segregate feeds from different cameras and scenes, automate image enhancements, and stabilize before mosaicing (image stitching). We present "AirMatch", a new automated system that first separates camera feeds and scenes, then stabilize and enhance the video feed of each camera; generates a mosaic of each scene of every feed and produce a super quality mosaic by stitching mosaics of all feeds. In our proposed solution, state-of-the-art video analytics techniques are tailored to work on videos from vintage cameras in aerial applications. Our new framework is independent of specialized hardware requirements and generates effective mosaics. Affine motion transform with smoothing Gaussian filter is selected for the stabilization of videos. A histogram-based method is performed for scene change detection and image contrast enhancement. Oriented FAST and rotated BRIEF (ORB) is selected for feature detection and descriptors in video stitching. Several experiments on a number of video streams are performed and the analysis shows that our system can efficiently generate mosaics of videos with high distortion and artifacts, compared with other commercially available mosaicing software.

  • Approximate Simultaneous Diagonalization of Matrices via Structured Low-Rank Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    680-690

    Approximate Simultaneous Diagonalization (ASD) is a problem to find a common similarity transformation which approximately diagonalizes a given square-matrix tuple. Many data science problems have been reduced into ASD through ingenious modelling. For ASD, the so-called Jacobi-like methods have been extensively used. However, the methods have no guarantee to suppress the magnitude of off-diagonal entries of the transformed tuple even if the given tuple has an exact common diagonalizer, i.e., the given tuple is simultaneously diagonalizable. In this paper, to establish an alternative powerful strategy for ASD, we present a novel two-step strategy, called Approximate-Then-Diagonalize-Simultaneously (ATDS) algorithm. The ATDS algorithm decomposes ASD into (Step 1) finding a simultaneously diagonalizable tuple near the given one; and (Step 2) finding a common similarity transformation which diagonalizes exactly the tuple obtained in Step 1. The proposed approach to Step 1 is realized by solving a Structured Low-Rank Approximation (SLRA) with Cadzow's algorithm. In Step 2, by exploiting the idea in the constructive proof regarding the conditions for the exact simultaneous diagonalizability, we obtain an exact common diagonalizer of the obtained tuple in Step 1 as a solution for the original ASD. Unlike the Jacobi-like methods, the ATDS algorithm has a guarantee to find an exact common diagonalizer if the given tuple happens to be simultaneously diagonalizable. Numerical experiments show that the ATDS algorithm achieves better performance than the Jacobi-like methods.

  • Using SubSieve Technique to Accelerate TupleSieve Algorithm

    Zedong SUN  Chunxiang GU  Yonghui ZHENG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2020/10/22
      Vol:
    E104-A No:4
      Page(s):
    714-722

    Sieve algorithms are regarded as the best algorithms to solve the shortest vector problem (SVP) on account of its good asymptotical quality, which could make it outperform enumeration algorithms in solving SVP of high dimension. However, due to its large memory requirement, sieve algorithms are not practical as expected, especially on high dimension lattice. To overcome this bottleneck, TupleSieve algorithm was proposed to reduce memory consumption by a trade-off between time and memory. In this work, aiming to make TupleSieve algorithm more practical, we combine TupleSieve algorithm with SubSieve technique and obtain a sub-exponential gain in running time. For 2-tuple sieve, 3-tuple sieve and arbitrary k-tuple sieve, when selecting projection index d appropriately, the time complexity of our algorithm is O(20.415(n-d)), O(20.566(n-d)) and $O(2^{ rac{kmathrm{log}_2p}{1-k}(n-d)})$ respectively. In practice, we propose a practical variant of our algorithm based on GaussSieve algorithm. Experimental results show that our algorithm implementation is about two order of magnitude faster than FPLLL's GuassSieve algorithm. Moreover, techniques such as XOR-POPCNT trick, progressive sieving and appropriate projection index selection can be exploited to obtain a further acceleration.

  • Deep Network for Parametric Bilinear Generalized Approximate Message Passing and Its Application in Compressive Sensing under Matrix Uncertainty

    Jingjing SI  Wenwen SUN  Chuang LI  Yinbo CHENG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    751-756

    Deep learning is playing an increasingly important role in signal processing field due to its excellent performance on many inference problems. Parametric bilinear generalized approximate message passing (P-BiG-AMP) is a new approximate message passing based approach to a general class of structure-matrix bilinear estimation problems. In this letter, we propose a novel feed-forward neural network architecture to realize P-BiG-AMP methodology with deep learning for the inference problem of compressive sensing under matrix uncertainty. Linear transforms utilized in the recovery process and parameters involved in the input and output channels of measurement are jointly learned from training data. Simulation results show that the trained P-BiG-AMP network can achieve higher reconstruction performance than the P-BiG-AMP algorithm with parameters tuned via the expectation-maximization method.

  • Hand-Held System to Find Victims with Smartphones in Disaster Environment Open Access

    Yasuyuki MARUYAMA  Toshiaki MIYAZAKI  

     
    PAPER-Sensing

      Pubricized:
    2020/10/19
      Vol:
    E104-B No:4
      Page(s):
    455-462

    After a natural disaster it is critical to urgently find victims buried under collapsed buildings. Most people habitually carry smartphones with them. Smartphones have a feature that periodically transmits Wi-Fi signals called “Probe Requests” to connect with access points. Moreover, smartphones transmit “Clear to Send” when they receive a “Request to Send” alert. This motivated us to develop a hand-held smartphone finder system that integrates a novel method for accurately locating a smartphone using the Wi-Fi signals, to support rescue workers. The system has a unique graphical user interface that tracks target smartphones. Thus, rescue workers can easily reach victims who have their smartphones with them under collapsed buildings. In this paper, after introducing the localization method, the system architecture of the smartphone finder and its prototype system are described, along with some experimental results that demonstrate the effectiveness of the smartphone finder prototype.

  • Electromagnetic Scattering Analysis from a Rectangular Hole in a Thick Conducting Screen

    Khanh Nam NGUYEN  Hiroshi SHIRAI  Hirohide SERIZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/08/20
      Vol:
    E104-C No:4
      Page(s):
    134-143

    Electromagnetic scattering of an electromagnetic plane wave from a rectangular hole in a thick conducting screen is solved using the Kirchhoff approximation (KA). The scattering fields can be derived as field radiations from equivalent magnetic current sources on the aperture of the hole. Some numerical results are compared with those by the Kobayashi potential (KP) method. The proposed method can be found to be efficient to solve the diffraction problem for high frequency regime.

  • Mapping Induced Subgraph Isomorphism Problems to Ising Models and Its Evaluations by an Ising Machine

    Natsuhito YOSHIMURA  Masashi TAWADA  Shu TANAKA  Junya ARAI  Satoshi YAGI  Hiroyuki UCHIYAMA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/01/07
      Vol:
    E104-D No:4
      Page(s):
    481-489

    Ising machines have attracted attention as they are expected to solve combinatorial optimization problems at high speed with Ising models corresponding to those problems. An induced subgraph isomorphism problem is one of the decision problems, which determines whether a specific graph structure is included in a whole graph or not. The problem can be represented by equality constraints in the words of combinatorial optimization problem. By using the penalty functions corresponding to the equality constraints, we can utilize an Ising machine to the induced subgraph isomorphism problem. The induced subgraph isomorphism problem can be seen in many practical problems, for example, finding out a particular malicious circuit in a device or particular network structure of chemical bonds in a compound. However, due to the limitation of the number of spin variables in the current Ising machines, reducing the number of spin variables is a major concern. Here, we propose an efficient Ising model mapping method to solve the induced subgraph isomorphism problem by Ising machines. Our proposed method theoretically solves the induced subgraph isomorphism problem. Furthermore, the number of spin variables in the Ising model generated by our proposed method is theoretically smaller than that of the conventional method. Experimental results demonstrate that our proposed method can successfully solve the induced subgraph isomorphism problem by using the Ising-model based simulated annealing and a real Ising machine.

  • Encrypted Traffic Identification by Fusing Softmax Classifier with Its Angular Margin Variant

    Lin YAN  Mingyong ZENG  Shuai REN  Zhangkai LUO  

     
    LETTER-Information Network

      Pubricized:
    2021/01/13
      Vol:
    E104-D No:4
      Page(s):
    517-520

    Encrypted traffic identification is to predict traffic types of encrypted traffic. A deep residual convolution network is proposed for this task. The Softmax classifier is fused with its angular variant, which sets an angular margin to achieve better discrimination. The proposed method improves representation learning and reaches excellent results on the public dataset.

  • Physical Cell ID Detection Probability Using NR Synchronization Signals in 28-GHz Band

    Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    436-445

    This paper presents the physical-layer cell identity (PCID) detection probability using the primary synchronization signal (PSS) and secondary synchronization signal (SSS) for the New Radio (NR) radio interface considering a large frequency offset and high Doppler frequency in multipath Rayleigh fading channels in the 28-GHz band. Simulation results show that cross-correlation based PSS detection after compensating for the frequency offset achieves higher PCID detection probability than autocorrelation based PSS detection at the average received signal-to-noise power ratio (SNR) values below approximately 0dB for the frequency stability of a user equipment (UE) oscillator of ϵ =5ppm. Meanwhile, both methods achieve almost the same PCID detection probability for average received SNR values higher than approximately 0dB. We also show that even with the large frequency offset caused by ϵ =20 ppm, the high PCID detection probability of approximately 90 (97)% and 90 (96)% is achieved for the cross-correlation or autocorrelation based PSS detection method, respectively, at the average received SNR of 0dB for the subcarrier spacing of 120 (240)kHz. We conclude that utilizing the multiplexing scheme for the PSS and SSS and their sequences is effective in achieving a high PCID detection probability considering a large frequency offset even with the frequency deviation of ϵ =20ppm in the 28-GHz band.

  • Malicious URLs Detection Based on a Novel Optimization Algorithm

    Wang BO  Zhang B. FANG  Liu X. WEI  Zou F. CHENG  Zhang X. HUA  

     
    LETTER-Information Network

      Pubricized:
    2021/01/14
      Vol:
    E104-D No:4
      Page(s):
    513-516

    In this paper, the issue of malicious URL detection is investigated. Firstly a P system is proposed. Then the new P system is introduced to design the optimization algorithm of BP neural network to achieve the malicious URL detection with better performance. In the end some examples are included and corresponding experimental results display the advantage and effectiveness of the optimization algorithm proposed.

  • Transmission Control Method for Data Retention Taking into Account the Low Vehicle Density Environments

    Ichiro GOTO  Daiki NOBAYASHI  Kazuya TSUKAMOTO  Takeshi IKENAGA  Myung LEE  

     
    LETTER-Information Network

      Pubricized:
    2021/01/05
      Vol:
    E104-D No:4
      Page(s):
    508-512

    With the development and spread of Internet of Things (IoT) technology, various kinds of data are now being generated from IoT devices. Some data generated from IoT devices depend on geographical location and time, and we refer to them as spatio-temporal data (STD). Since the “locally produced and consumed” paradigm of STD use is effective for location-dependent applications, the authors have previously proposed a vehicle-based STD retention system. However, in low vehicle density environments, the data retention becomes difficult due to the decrease in the number of data transmissions in this method. In this paper, we propose a new data transmission control method for data retention in the low vehicle density environments.

  • Analysis of BER Degradation Owing to Multiple Crosstalk Channels in Optical QPSK/QAM Signals

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    370-377

    Inter-channel crosstalk is one of the limiting factors in multichannel optical systems. This paper presents a theoretical analysis of the bit-error-rate (BER) performance of quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals influenced by multiple crosstalk channels. The field distribution of multiple crosstalk channels in the constellation map is calculated. The BER of the QPSK/QAM signal, onto which the crosstalk light is superimposed, is then evaluated for a varying number of crosstalk channels under the condition that the total crosstalk power is constant. The results quantitatively confirm that as the channel number increases, the BER degradation caused by crosstalk light approaches that caused by Gaussian noise light. It is also confirmed that the degradations caused by crosstalk light and Gaussian light are similar for QAM signals of high-level modulation.

  • Pilot Decontamination in Spatially Correlated Massive MIMO Uplink via Expectation Propagation

    Wataru TATSUNO  Keigo TAKEUCHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2020/10/09
      Vol:
    E104-A No:4
      Page(s):
    723-733

    This paper addresses pilot contamination in massive multiple-input multiple-output (MIMO) uplink. Pilot contamination is caused by reuse of identical pilot sequences in adjacent cells. To solve pilot contamination, the base station utilizes differences between the transmission frames of different users, which are detected via joint channel and data estimation. The joint estimation is regarded as a bilinear inference problem in compressed sensing. Expectation propagation (EP) is used to propose an iterative channel and data estimation algorithm. Initial channel estimates are attained via time-shifted pilots without exploiting information about large scale fading. The proposed EP modifies two points in conventional bilinear adaptive vector approximate message-passing (BAd-VAMP). One is that EP utilizes data estimates after soft decision in the channel estimation while BAd-VAMP uses them before soft decision. The other point is that EP can utilize the prior distribution of the channel matrix while BAd-VAMP cannot in principle. Numerical simulations show that EP converges much faster than BAd-VAMP in spatially correlated MIMO, in which approximate message-passing fails to converge toward the same fixed-point as EP and BAd-VAMP.

1321-1340hit(20498hit)