The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1201-1220hit(20498hit)

  • An Efficient Aircraft Boarding Strategy Considering Implementation

    Kenji UEHARA  Kunihiko HIRAISHI  Kokolo IKEDA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/01/22
      Vol:
    E104-A No:8
      Page(s):
    1051-1058

    Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.

  • A Statistical Trust for Detecting Malicious Nodes in IoT Sensor Networks

    Fang WANG  Zhe WEI  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2021/02/19
      Vol:
    E104-A No:8
      Page(s):
    1084-1087

    The unattended malicious nodes pose great security threats to the integrity of the IoT sensor networks. However, preventions such as cryptography and authentication are difficult to be deployed in resource constrained IoT sensor nodes with low processing capabilities and short power supply. To tackle these malicious sensor nodes, in this study, the trust computing method is applied into the IoT sensor networks as a light weight security mechanism, and based on the theory of Chebyshev Polynomials for the approximation of time series, the trust data sequence generated by each sensor node is linearized and treated as a time series for malicious node detection. The proposed method is evaluated against existing schemes using several simulations and the results demonstrate that our method can better deal with malicious nodes resulting in higher correct packet delivery rate.

  • Optimization and Combination of Scientific and Technological Resource Services Based on Multi-Community Collaborative Search

    Yida HONG  Yanlei YIN  Cheng GUO  Xiaobao LIU  

     
    PAPER

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1313-1320

    Many scientific and technological resources (STR) cannot meet the needs of real demand-based industrial services. To address this issue, the characteristics of scientific and technological resource services (STRS) are analyzed, and a method of the optimal combination of demand-based STR based on multi-community collaborative search is then put forward. An optimal combined evaluative system that includes various indexes, namely response time, innovation, composability, and correlation, is developed for multi-services of STR, and a hybrid optimal combined model for STR is constructed. An evaluative algorithm of multi-community collaborative search is used to study the interactions between general communities and model communities, thereby improving the adaptive ability of the algorithm to random dynamic resource services. The average convergence value CMCCSA=0.00274 is obtained by the convergence measurement function, which exceeds other comparison algorithms. The findings of this study indicate that the proposed methods can preferably reach the maximum efficiency of demand-based STR, and new ideas and methods for implementing demand-based real industrial services for STR are provided.

  • Construction of Multiple-Valued Bent Functions Using Subsets of Coefficients in GF and RMF Domains

    Milo&scaron M. RADMANOVIĆ  Radomir S. STANKOVIĆ  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1103-1110

    Multiple-valued bent functions are functions with highest nonlinearity which makes them interesting for multiple-valued cryptography. Since the general structure of bent functions is still unknown, methods for construction of bent functions are often based on some deterministic criteria. For practical applications, it is often necessary to be able to construct a bent function that does not belong to any specific class of functions. Thus, the criteria for constructions are combined with exhaustive search over all possible functions which can be very CPU time consuming. A solution is to restrict the search space by some conditions that should be satisfied by the produced bent functions. In this paper, we proposed the construction method based on spectral subsets of multiple-valued bent functions satisfying certain appropriately formulated restrictions in Galois field (GF) and Reed-Muller-Fourier (RMF) domains. Experimental results show that the proposed method efficiently constructs ternary and quaternary bent functions by using these restrictions.

  • Logarithmic Regret for Distributed Online Subgradient Method over Unbalanced Directed Networks

    Makoto YAMASHITA  Naoki HAYASHI  Takeshi HATANAKA  Shigemasa TAKAI  

     
    PAPER-Systems and Control

      Pubricized:
    2021/02/04
      Vol:
    E104-A No:8
      Page(s):
    1019-1026

    This paper investigates a constrained distributed online optimization problem over strongly connected communication networks, where a local cost function of each agent varies in time due to environmental factors. We propose a distributed online projected subgradient method over unbalanced directed networks. The performance of the proposed method is evaluated by a regret which is defined by the error between the cumulative cost over time and the cost of the optimal strategy in hindsight. We show that a logarithmic regret bound can be achieved for strongly convex cost functions. We also demonstrate the validity of the proposed method through a numerical example on distributed estimation over a diffusion field.

  • An Efficient Deep Learning Based Coarse-to-Fine Cephalometric Landmark Detection Method

    Yu SONG  Xu QIAO  Yutaro IWAMOTO  Yen-Wei CHEN  Yili CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/05/14
      Vol:
    E104-D No:8
      Page(s):
    1359-1366

    Accurate and automatic quantitative cephalometry analysis is of great importance in orthodontics. The fundamental step for cephalometry analysis is to annotate anatomic-interested landmarks on X-ray images. Computer-aided automatic method remains to be an open topic nowadays. In this paper, we propose an efficient deep learning-based coarse-to-fine approach to realize accurate landmark detection. In the coarse detection step, we train a deep learning-based deformable transformation model by using training samples. We register test images to the reference image (one training image) using the trained model to predict coarse landmarks' locations on test images. Thus, regions of interest (ROIs) which include landmarks can be located. In the fine detection step, we utilize trained deep convolutional neural networks (CNNs), to detect landmarks in ROI patches. For each landmark, there is one corresponding neural network, which directly does regression to the landmark's coordinates. The fine step can be considered as a refinement or fine-tuning step based on the coarse detection step. We validated the proposed method on public dataset from 2015 International Symposium on Biomedical Imaging (ISBI) grand challenge. Compared with the state-of-the-art method, we not only achieved the comparable detection accuracy (the mean radial error is about 1.0-1.6mm), but also largely shortened the computation time (4 seconds per image).

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

  • Mutual Information Approximation Based Polar Code Design for 4Tb/in2 2D-ISI Channels

    Lingjun KONG  Haiyang LIU  Jin TIAN  Shunwai ZHANG  Shengmei ZHAO  Yi FANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/02/16
      Vol:
    E104-A No:8
      Page(s):
    1075-1079

    In this letter, a method for the construction of polar codes based on the mutual information approximation (MIA) is proposed for the 4Tb/in2 two-dimensional inter-symbol interference (2D-ISI) channels, such as the bit-patterned magnetic recording (BPMR) and two-dimensional magnetic recording (TDMR). The basic idea is to exploit the MIA between the input and output of a 2D detector to establish a log-likelihood ratio (LLR) distribution model based on the MIA results, which compensates the gap caused by the 2D ISI channel. Consequently, the polar codes obtained by the optimization techniques previously developed for the additive white Gaussian noise (AWGN) channels can also have satisfactory performances over 2D-ISI channels. Simulated results show that the proposed polar codes can outperform the polar codes constructed by the traditional methods over 4Tb/in2 2D-ISI channels.

  • Spatial Degrees of Freedom Exploration and Analog Beamforming Designs for Signature Spatial Modulation

    Yuwen CAO  Tomoaki OHTSUKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/02/24
      Vol:
    E104-B No:8
      Page(s):
    934-941

    In this paper, we focus on developing efficient multi-configuration selection mechanisms by exploiting the spatial degrees of freedom (DoF), and leveraging the simple design benefits of spatial modulation (SM). Notably, the SM technique, as well as its variants, faces the following critical challenges: (i) the performance degradation and difficulty in improving the system performance for higher-level QAM constellations, and (ii) the vast complexity cost in precoder designs particularly for the increasing system dimension and amplitude-phase modulation (APM) constellation dimension. Given this situation, we first investigate two independent modulation domains, i.e., the original signal- and spatial-constellations. By exploiting the analog shift weighting and the virtual spatial signature technologies, we introduce the signature spatial modulation (SSM) concept, which is capable of guaranteing superior trade-offs among spectral- and cost-efficiencies, and system bit error rate (BER) performance. Besides, we develop an analog beamforming for SSM by solving the introduced unconstrained Lagrange dual function minimization problem. Numerical results manifest the performance gain brought by our developed analog beamforming for SSM.

  • Heuristic Approach to Distributed Server Allocation with Preventive Start-Time Optimization against Server Failure

    Souhei YANASE  Shuto MASUDA  Fujun HE  Akio KAWABATA  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2021/02/01
      Vol:
    E104-B No:8
      Page(s):
    942-950

    This paper presents a distributed server allocation model with preventive start-time optimization against a single server failure. The presented model preventively determines the assignment of servers to users under each failure pattern to minimize the largest maximum delay among all failure patterns. We formulate the proposed model as an integer linear programming (ILP) problem. We prove the NP-completeness of the considered problem. As the number of users and that of servers increase, the size of ILP problem increases; the computation time to solve the ILP problem becomes excessively large. We develop a heuristic approach that applies simulated annealing and the ILP approach in a hybrid manner to obtain the solution. Numerical results reveal that the developed heuristic approach reduces the computation time by 26% compared to the ILP approach while increasing the largest maximum delay by just 3.4% in average. It reduces the largest maximum delay compared with the start-time optimization model; it avoids the instability caused by the unnecessary disconnection permitted by the run-time optimization model.

  • Single-Mode Condition of Chalcogenide Glass Channel Waveguides for Integrated Optical Devices Operated across the Astronomical N-Band

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2021/01/13
      Vol:
    E104-C No:8
      Page(s):
    386-389

    In this study, we conduct guided mode analyses for chalcogenide glass channel waveguides using As2Se3 core and As2S3 lower cladding to determine their single-mode conditions across the astronomical N-band (8-12µm). The results reveal that a single-mode operation over the band can be achieved by choosing a suitable core-thickness.

  • Classification Functions for Handwritten Digit Recognition

    Tsutomu SASAO  Yuto HORIKAWA  Yukihiro IGUCHI  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1076-1082

    A classification function maps a set of vectors into several classes. A machine learning problem is treated as a design problem for partially defined classification functions. To realize classification functions for MNIST hand written digits, three different architectures are considered: Single-unit realization, 45-unit realization, and 45-unit ×r realization. The 45-unit realization consists of 45 ternary classifiers, 10 counters, and a max selector. Test accuracy of these architectures are compared using MNIST data set.

  • A ΔΣ-Modulation Feedforward Network for Non-Binary Analog-to-Digital Converters

    Takao WAHO  Tomoaki KOIZUMI  Hitoshi HAYASHI  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/05/24
      Vol:
    E104-D No:8
      Page(s):
    1130-1137

    A feedforward (FF) network using ΔΣ modulators is investigated to implement a non-binary analog-to-digital (A/D) converter. Weighting coefficients in the network are determined to suppress the generation of quantization noise. A moving average is adopted to prevent the analog signal amplitude from increasing beyond the allowable input range of the modulators. The noise transfer function is derived and used to estimate the signal-to-noise ratio (SNR). The FF network output is a non-uniformly distributed multi-level signal, which results in a better SNR than a uniformly distributed one. Also, the effect of the characteristic mismatch in analog components on the SNR is analyzed. Our behavioral simulations show that the SNR is improved by more than 30 dB, or equivalently a bit resolution of 5 bits, compared with a conventional first-order ΔΣ modulator.

  • PAM-4 Eye-Opening Monitor Technique Using Gaussian Mixture Model for Adaptive Equalization

    Yosuke IIJIMA  Keigo TAYA  Yasushi YUMINAKA  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1138-1145

    To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.

  • The Fractional-N All Digital Frequency Locked Loop with Robustness for PVT Variation and Its Application for the Microcontroller Unit

    Ryoichi MIYAUCHI  Akio YOSHIDA  Shuya NAKANO  Hiroki TAMURA  Koichi TANNO  Yutaka FUKUCHI  Yukio KAWAMURA  Yuki KODAMA  Yuichi SEKIYA  

     
    PAPER-Circuit Technologies

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:8
      Page(s):
    1146-1153

    This paper describes the Fractional-N All Digital Frequency Locked Loop (ADFLL) with Robustness for PVT variation and its application for the microcontroller unit. The conventional FLL is difficult to achieve the required specification by using the fine CMOS process. Especially, the conventional FLL has some problems such as unexpected operation and long lock time that are caused by PVT variation. To overcome these problems, we propose a new ADFLL which uses dynamic selecting digital filter coefficients. The proposed ADFLL was evaluatied through the HSPICE simulation and fabricating chips using a 0.13 µm CMOS process. From these results, we observed the proposed ADFLL has robustness for PVT variation by using dynamic selecting digital filter coefficient, and the lock time is improved up to 57%, clock jitter is 0.85 nsec.

  • On Measurement System for Frequency of Uterine Peristalsis

    Ryosuke NISHIHARA  Hidehiko MATSUBAYASHI  Tomomoto ISHIKAWA  Kentaro MORI  Yutaka HATA  

     
    PAPER-Medical Applications

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1154-1160

    The frequency of uterine peristalsis is closely related to the success rate of pregnancy. An ultrasonic imaging is almost always employed for the measure of the frequency. The physician subjectively evaluates the frequency from the ultrasound image by the naked eyes. This paper aims to measure the frequency of uterine peristalsis from the ultrasound image. The ultrasound image consists of relative amounts in the brightness, and the contour of the uterine is not clear. It was not possible to measure the frequency by using the inter-frame difference and optical flow, which are the representative methods of motion detection, since uterine peristaltic movement is too small to apply them. This paper proposes a measurement method of the frequency of the uterine peristalsis from the ultrasound image in the implantation phase. First, traces of uterine peristalsis are semi-automatically done from the images with location-axis and time-axis. Second, frequency analysis of the uterine peristalsis is done by Fourier transform for 3 minutes. As a result, the frequency of uterine peristalsis was known as the frequency with the dominant frequency ingredient with maximum value among the frequency spectrums. Thereby, we evaluate the number of the frequency of uterine peristalsis quantitatively from the ultrasound image. Finally, the success rate of pregnancy is calculated from the frequency based on Fuzzy logic. This enabled us to evaluate the success rate of pregnancy by measuring the uterine peristalsis from the ultrasound image.

  • Toward Human-Friendly ASR Systems: Recovering Capitalization and Punctuation for Vietnamese Text

    Thi Thu HIEN NGUYEN  Thai BINH NGUYEN  Ngoc PHUONG PHAM  Quoc TRUONG DO  Tu LUC LE  Chi MAI LUONG  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-D No:8
      Page(s):
    1195-1203

    Speech recognition is a technique that recognizes words and sentences in audio form and converts them into text sentences. Currently, with the advancement of deep learning technologies, speech recognition has achieved very satisfactory results close to human abilities. However, there are still limitations in identification results such as lack of punctuation, capitalization, and standardized numerical data. Vietnamese also contains local words, homonyms, etc, which make it difficult to read and understand the identification results for users as well as to perform the next tasks in Natural Language Processing (NLP). In this paper, we propose to combine the transformer decoder with conditional random field (CRF) to restore punctuation and capitalization for the Vietnamese automatic speech recognition (ASR) output. By chunking input sentences and merging output sequences, it is possible to handle longer strings with greater accuracy. Experiments show that the method proposed in the Vietnamese post-speech recognition dataset delivers the best results.

  • CJAM: Convolutional Neural Network Joint Attention Mechanism in Gait Recognition

    Pengtao JIA  Qi ZHAO  Boze LI  Jing ZHANG  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1239-1249

    Gait recognition distinguishes one individual from others according to the natural patterns of human gaits. Gait recognition is a challenging signal processing technology for biometric identification due to the ambiguity of contours and the complex feature extraction procedure. In this work, we proposed a new model - the convolutional neural network (CNN) joint attention mechanism (CJAM) - to classify the gait sequences and conduct person identification using the CASIA-A and CASIA-B gait datasets. The CNN model has the ability to extract gait features, and the attention mechanism continuously focuses on the most discriminative area to achieve person identification. We present a comprehensive transformation from gait image preprocessing to final identification. The results from 12 experiments show that the new attention model leads to a lower error rate than others. The CJAM model improved the 3D-CNN, CNN-LSTM (long short-term memory), and the simple CNN by 8.44%, 2.94% and 1.45%, respectively.

  • Matrix Factorization Based Recommendation Algorithm for Sharing Patent Resource

    Xueqing ZHANG  Xiaoxia LIU  Jun GUO  Wenlei BAI  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1250-1257

    As scientific and technological resources are experiencing information overload, it is quite expensive to find resources that users are interested in exactly. The personalized recommendation system is a good candidate to solve this problem, but data sparseness and the cold starting problem still prevent the application of the recommendation system. Sparse data affects the quality of the similarity measurement and consequently the quality of the recommender system. In this paper, we propose a matrix factorization recommendation algorithm based on similarity calculation(SCMF), which introduces potential similarity relationships to solve the problem of data sparseness. A penalty factor is adopted in the latent item similarity matrix calculation to capture more real relationships furthermore. We compared our approach with other 6 recommendation algorithms and conducted experiments on 5 public data sets. According to the experimental results, the recommendation precision can improve by 2% to 9% versus the traditional best algorithm. As for sparse data sets, the prediction accuracy can also improve by 0.17% to 18%. Besides, our approach was applied to patent resource exploitation provided by the wanfang patents retrieval system. Experimental results show that our method performs better than commonly used algorithms, especially under the cold starting condition.

  • Two-Stage Fine-Grained Text-Level Sentiment Analysis Based on Syntactic Rule Matching and Deep Semantic

    Weizhi LIAO  Yaheng MA  Yiling CAO  Guanglei YE  Dongzhou ZUO  

     
    PAPER

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1274-1280

    Aiming at the problem that traditional text-level sentiment analysis methods usually ignore the emotional tendency corresponding to the object or attribute. In this paper, a novel two-stage fine-grained text-level sentiment analysis model based on syntactic rule matching and deep semantics is proposed. Based on analyzing the characteristics and difficulties of fine-grained sentiment analysis, a two-stage fine-grained sentiment analysis algorithm framework is constructed. In the first stage, the objects and its corresponding opinions are extracted based on syntactic rules matching to obtain preliminary objects and opinions. The second stage based on deep semantic network to extract more accurate objects and opinions. Aiming at the problem that the extraction result contains multiple objects and opinions to be matched, an object-opinion matching algorithm based on the minimum lexical separation distance is proposed to achieve accurate pairwise matching. Finally, the proposed algorithm is evaluated on several public datasets to demonstrate its practicality and effectiveness.

1201-1220hit(20498hit)