The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1361-1380hit(20498hit)

  • A Ladder Spherical Evolution Search Algorithm

    Haichuan YANG  Shangce GAO  Rong-Long WANG  Yuki TODO  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2020/12/02
      Vol:
    E104-D No:3
      Page(s):
    461-464

    In 2019, a completely new algorithm, spherical evolution (SE), was proposed. The brand new search style in SE has been proved to have a strong search capability. In order to take advantage of SE, we propose a novel method called the ladder descent (LD) method to improve the SE' population update strategy and thereafter propose a ladder spherical evolution search (LSE) algorithm. With the number of iterations increasing, the range of parent individuals eligible to produce offspring gradually changes from the entire population to the current optimal individual, thereby enhancing the convergence ability of the algorithm. Experiment results on IEEE CEC2017 benchmark functions indicate the effectiveness of LSE.

  • Self-Learning pLSA Model for Abnormal Behavior Detection in Crowded Scenes

    Shuoyan LIU  Enze YANG  Kai FANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/11/30
      Vol:
    E104-D No:3
      Page(s):
    473-476

    Abnormal behavior detection is now a widely concerned research field, especially for crowded scenes. However, most traditional unsupervised approaches often suffered from the problem when the normal events in the scenario with large visual variety. This paper proposes a self-learning probabilistic Latent Semantic Analysis, which aims at taking full advantage of the high-level abnormal information to solve problems. We select the informative observations to construct the “reference events” from the training sets as a high-level guidance cue. Specifically, the training set is randomly divided into two separate subsets. One is used to learn this model, which is defined as the initialization sequence of “reference events”. The other aims to update this model and the the infrequent samples are chosen into the “reference events”. Finally, we define anomalies using events that are least similar to “reference events”. The experimental result demonstrates that the proposed model can detect anomalies accurately and robustly in the real-world crowd environment.

  • Non-Orthogonal Packet Access Based on Low Density Signature With Phase Only Adaptive Precoding

    Satoshi DENNO  Ryoko SASAKI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/15
      Vol:
    E104-B No:3
      Page(s):
    328-337

    This paper proposes non-orthogonal packet access based on low density signature with phase only adaptive precoding. The proposed access allows multiple user terminals to send their packets simultaneously for implementing massive connectivity, though only one antenna is put on every terminal and on an access point. This paper proposes a criterion that defines the optimum rotation angles for the phase only precoding, and an algorithm based on the steepest descent to approach the optimum rotation angles. Moreover, this paper proposes two complexity-reduced algorithms that converge much faster than the original algorithm. When 6 packets are transmitted in 4 time slots, i.e., overloading ratio of 1.5, the proposed adaptive precoding based on all the proposed algorithms attains a gain of about 4dB at the BER of 10-4 in Rician fading channels.

  • Constructions and Some Search Results of Ternary LRCs with d = 6 Open Access

    Youliang ZHENG  Ruihu LI  Jingjie LV  Qiang FU  

     
    LETTER-Coding Theory

      Pubricized:
    2020/09/01
      Vol:
    E104-A No:3
      Page(s):
    644-649

    Locally repairable codes (LRCs) are a type of new erasure codes designed for modern distributed storage systems (DSSs). In order to obtain ternary LRCs of distance 6, firstly, we propose constructions with disjoint repair groups and construct several families of LRCs with 1 ≤ r ≤ 6, where codes with 3 ≤ r ≤ 6 are obtained through a search algorithm. Then, we propose a new method to extend the length of codes without changing the distance. By employing the methods such as expansion and deletion, we obtain more LRCs from a known LRC. The resulting LRCs are optimal or near optimal in terms of the Cadambe-Mazumdar (C-M) bound.

  • Real-Time Distant Sound Source Suppression Using Spectral Phase Difference

    Kazuhiro MURAKAMI  Arata KAWAMURA  Yoh-ichi FUJISAKA  Nobuhiko HIRUMA  Youji IIGUNI  

     
    PAPER-Engineering Acoustics

      Pubricized:
    2020/09/24
      Vol:
    E104-A No:3
      Page(s):
    604-612

    In this paper, we propose a real-time BSS (Blind Source Separation) system with two microphones that extracts only desired sound sources. Under the assumption that the desired sound sources are close to the microphones, the proposed BSS system suppresses distant sound sources as undesired sound sources. We previously developed a BSS system that can estimate the distance from a microphone to a sound source and suppress distant sound sources, but it was not a real-time processing system. The proposed BSS system is a real-time version of our previous BSS system. To develop the proposed BSS system, we simplify some BSS procedures of the previous system. Simulation results showed that the proposed system can effectively suppress the distant source signals in real-time and has almost the same capability as the previous system.

  • Experimental Verification of SDN/NFV in Integrated mmWave Access and Mesh Backhaul Networks Open Access

    Makoto NAKAMURA  Hiroaki NISHIUCHI  Jin NAKAZATO  Konstantin KOSLOWSKI  Julian DAUBE  Ricardo SANTOS  Gia Khanh TRAN  Kei SAKAGUCHI  

     
    PAPER-Network

      Pubricized:
    2020/09/29
      Vol:
    E104-B No:3
      Page(s):
    217-228

    In this paper, a Proof-of-Concept (PoC) architecture is constructed, and the effectiveness of mmWave overlay heterogeneous network (HetNet) with mesh backhaul utilizing route-multiplexing and Multi-access Edge Computing (MEC) utilizing prefetching algorithm is verified by measuring the throughput and the download time of real contents. The architecture can cope with the intensive mobile data traffic since data delivery utilizes multiple backhaul routes based on the mesh topology, i.e. route-multiplexing mechanism. On the other hand, MEC deploys the network edge contents requested in advance by nearby User Equipment (UE) based on pre-registered context information such as location, destination, demand application, etc. to the network edge, which is called prefetching algorithm. Therefore, mmWave access can be fully exploited even with capacity-limited backhaul networks by introducing the proposed algorithm. These technologies solve the problems in conventional mmWave HetNet to reduce mobile data traffic on backhaul networks to cloud networks. In addition, the proposed architecture is realized by introducing wireless Software Defined Network (SDN) and Network Function Virtualization (NFV). In our architecture, the network is dynamically controlled via wide-coverage microwave band links by which UE's context information is collected for optimizing the network resources and controlling network infrastructures to establish backhaul routes and MEC servers. In this paper, we develop the hardware equipment and middleware systems, and introduce these algorithms which are used as a driver of IEEE802.11ad and open source software. For 5G and beyond, the architecture integrated in mmWave backhaul, MEC and SDN/NFV will support some scenarios and use cases.

  • Geolocation-Centric Information Platform for Resilient Spatio-temporal Content Management Open Access

    Kazuya TSUKAMOTO  Hitomi TAMURA  Yuzo TAENAKA  Daiki NOBAYASHI  Hiroshi YAMAMOTO  Takeshi IKENAGA  Myung LEE  

     
    INVITED PAPER-Network

      Pubricized:
    2020/09/11
      Vol:
    E104-B No:3
      Page(s):
    199-209

    In IoT era, the growth of data variety is driven by cross-domain data fusion. In this paper, we advocate that “local production for local consumption (LPLC) paradigm” can be an innovative approach in cross-domain data fusion, and propose a new framework, geolocation-centric information platform (GCIP) that can produce and deliver diverse spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geographic hierarchy edge network and (2) adhoc-based STC retention system are interplayed to provide both of geolocation-awareness and resiliency. Then, we discussed the concepts and the technical challenges of the GCIP. Finally, we implemented a proof-of-concepts of GCIP and demonstrated its efficacy through practical experiments on campus IPv6 network and simulation experiments.

  • A Satisfiability Algorithm for Synchronous Boolean Circuits

    Hiroki MORIZUMI  

     
    LETTER

      Pubricized:
    2020/11/02
      Vol:
    E104-D No:3
      Page(s):
    392-393

    The circuit satisfiability problem has been intensively studied since Ryan Williams showed a connection between the problem and lower bounds for circuit complexity. In this letter, we present a #SAT algorithm for synchronous Boolean circuits of n inputs and s gates in time $2^{nleft(1 - rac{1}{2^{O(s/n)}} ight)}$ if s=o(n log n).

  • End-to-End SDN/NFV Orchestration of Multi-Domain Transport Networks and Distributed Computing Infrastructure for Beyond-5G Services Open Access

    Carlos MANSO  Pol ALEMANY  Ricard VILALTA  Raul MUÑOZ  Ramon CASELLAS  Ricardo MARTÍNEZ  

     
    INVITED PAPER-Network

      Pubricized:
    2020/09/11
      Vol:
    E104-B No:3
      Page(s):
    188-198

    The need of telecommunications operators to reduce Capital and Operational Expenditures in networks which traffic is continuously growing has made them search for new alternatives to simplify and automate their procedures. Because of the different transport network segments and multiple layers, the deployment of end-to-end services is a complex task. Also, because of the multiple vendor existence, the control plane has not been fully homogenized, making end-to-end connectivity services a manual and slow process, and the allocation of computing resources across the entire network a difficult task. The new massive capacity requested by Data Centers and the new 5G connectivity services will urge for a better solution to orchestrate the transport network and the distributed computing resources. This article presents and demonstrates a Network Slicing solution together with an end-to-end service orchestration for transport networks. The Network Slicing solution permits the co-existence of virtual networks (one per service) over the same physical network to ensure the specific service requirements. The network orchestrator allows automated end-to-end services across multi-layer multi-domain network segments making use of the standard Transport API (TAPI) data model for both l0 and l2 layers. Both solutions will allow to keep up with beyond 5G services and the higher and faster demand of network and computing resources.

  • Clustering of Handwritten Mathematical Expressions for Computer-Assisted Marking

    Vu-Tran-Minh KHUONG  Khanh-Minh PHAN  Huy-Quang UNG  Cuong-Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2020/11/24
      Vol:
    E104-D No:2
      Page(s):
    275-284

    Many approaches enable teachers to digitalize students' answers and mark them on the computer. However, they are still limited for supporting marking descriptive mathematical answers that can best evaluate learners' understanding. This paper presents clustering of offline handwritten mathematical expressions (HMEs) to help teachers efficiently mark answers in the form of HMEs. In this work, we investigate a method of combining feature types from low-level directional features and multiple levels of recognition: bag-of-symbols, bag-of-relations, and bag-of-positions. Moreover, we propose a marking cost function to measure the marking effort. To show the effectiveness of our method, we used two datasets and another sampled from CROHME 2016 with synthesized patterns to prepare correct answers and incorrect answers for each question. In experiments, we employed the k-means++ algorithm for each level of features and considered their combination to produce better performance. The experiments show that the best combination of all the feature types can reduce the marking cost to about 0.6 by setting the number of answer clusters appropriately compared with the manual one-by-one marking.

  • Mobility Innovation “Another CASE” Open Access

    Koji OGURI  Haruki KAWANAKA  Shintaro ONO  

     
    INVITED PAPER

      Vol:
    E104-A No:2
      Page(s):
    349-356

    The environment surrounding automotive technology is undergoing a major transformation. In particular, as technological innovation advances in new areas called “CASE” such as Connected, Autonomous/Automated, Shared, and Electric, various research activities are underway. However, this is an approach from the standpoint of the automobile centered, and when considering the development of a new automobile society, it is necessary to consider from the standpoint of “human centered,” who are users, too. Therefore, this paper proposes the possibility of technological innovation in the area of “Another CASE” such as Comfortable, Accessible, Safety, and Enjoy/Exciting, and introduces the contents of some interesting researches.

  • Tactile Touch Display Using Segmented-Electrode Array with Tactile Strength Stabilization Open Access

    Hiroshi HAGA  Takuya ASAI  Shin TAKEUCHI  Harue SASAKI  Hirotsugu YAMAMOTO  Koji SHIGEMURA  

     
    INVITED PAPER-Electronic Displays

      Pubricized:
    2020/07/22
      Vol:
    E104-C No:2
      Page(s):
    64-72

    We developed an 8.4-inch electrostatic-tactile touch display using a segmented-electrode array (30×20) as both tactile pixels and touch sensors. Each pixel can be excited independently so that the electrostatic-tactile touch display allows presenting real localized tactile textures in any shape. A driving scheme in which the tactile strength is independent of the grounding state of the human body by employing two-phased actuation was also proposed and demonstrated. Furthermore, tactile crosstalk was investigated to find it was due to the voltage fluctuation in the human body and it was diminished by applying the aforementioned driving scheme.

  • Some Results on Incorrigible Sets of Binary Linear Codes

    Hedong HOU  Haiyang LIU  Lianrong MA  

     
    LETTER-Coding Theory

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    582-586

    In this letter, we consider the incorrigible sets of binary linear codes. First, we show that the incorrigible set enumerator of a binary linear code is tantamount to the Tutte polynomial of the vector matroid induced by the parity-check matrix of the code. A direct consequence is that determining the incorrigible set enumerator of binary linear codes is #P-hard. Then for a cycle code, we express its incorrigible set enumerator via the Tutte polynomial of the graph describing the code. Furthermore, we provide the explicit formula of incorrigible set enumerators of cycle codes constructed from complete graphs.

  • Prosodic Features Control by Symbols as Input of Sequence-to-Sequence Acoustic Modeling for Neural TTS

    Kiyoshi KURIHARA  Nobumasa SEIYAMA  Tadashi KUMANO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/11/09
      Vol:
    E104-D No:2
      Page(s):
    302-311

    This paper describes a method to control prosodic features using phonetic and prosodic symbols as input of attention-based sequence-to-sequence (seq2seq) acoustic modeling (AM) for neural text-to-speech (TTS). The method involves inserting a sequence of prosodic symbols between phonetic symbols that are then used to reproduce prosodic acoustic features, i.e. accents, pauses, accent breaks, and sentence endings, in several seq2seq AM methods. The proposed phonetic and prosodic labels have simple descriptions and a low production cost. By contrast, the labels of conventional statistical parametric speech synthesis methods are complicated, and the cost of time alignments such as aligning the boundaries of phonemes is high. The proposed method does not need the boundary positions of phonemes. We propose an automatic conversion method for conventional labels and show how to automatically reproduce pitch accents and phonemes. The results of objective and subjective evaluations show the effectiveness of our method.

  • Design and Implementation of a Software Tester for Benchmarking Stateless NAT64 Gateways Open Access

    Gábor LENCSE  

     
    POSITION PAPER-Network

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    128-140

    The Benchmarking Working Group of IETF has defined a benchmarking methodology for IPv6 transition technologies including stateless NAT64 (also called SIIT) in RFC 8219. The aim of our effort is to design and implement a test program for SIIT gateways, which complies with RFC 8219, and thus to create the world's first standard free software SIIT benchmarking tool. In this paper, we overview the requirements for the tester on the basis of RFC 8219, and make scope decisions: throughput, frame loss rate, latency and packet delay variation (PDV) tests are implemented. We fully disclose our design considerations and the most important implementation decisions. Our tester, siitperf, is written in C++ and it uses the Intel Data Plane Development Kit (DPDK). We also document its functional tests and its initial performance estimation. Our tester is distributed as free software under GPLv3 license for the benefit of the research, benchmarking and networking communities.

  • Packet Processing Architecture with Off-Chip Last Level Cache Using Interleaved 3D-Stacked DRAM Open Access

    Tomohiro KORIKAWA  Akio KAWABATA  Fujun HE  Eiji OKI  

     
    PAPER-Network System

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    149-157

    The performance of packet processing applications is dependent on the memory access speed of network systems. Table lookup requires fast memory access and is one of the most common processes in various packet processing applications, which can be a dominant performance bottleneck. Therefore, in Network Function Virtualization (NFV)-aware environments, on-chip fast cache memories of a CPU of general-purpose hardware become critical to achieve high performance packet processing speeds of over tens of Gbps. Also, multiple types of applications and complex applications are executed in the same system simultaneously in carrier network systems, which require adequate cache memory capacities as well. In this paper, we propose a packet processing architecture that utilizes interleaved 3 Dimensional (3D)-stacked Dynamic Random Access Memory (DRAM) devices as off-chip Last Level Cache (LLC) in addition to several levels of dedicated cache memories of each CPU core. Entries of a lookup table are distributed in every bank and vault to utilize both bank interleaving and vault-level memory parallelism. Frequently accessed entries in 3D-stacked DRAM are also cached in on-chip dedicated cache memories of each CPU core. The evaluation results show that the proposed architecture reduces the memory access latency by 57%, and increases the throughput by 100% while reducing the blocking probability but about 10% compared to the architecture with shared on-chip LLC. These results indicate that 3D-stacked DRAM can be practical as off-chip LLC in parallel packet processing systems.

  • RAMST-CNN: A Residual and Multiscale Spatio-Temporal Convolution Neural Network for Personal Identification with EEG

    Yuxuan ZHU  Yong PENG  Yang SONG  Kenji OZAWA  Wanzeng KONG  

     
    PAPER-Biometrics

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    563-571

    In this study we propose a method to perform personal identification (PI) based on Electroencephalogram (EEG) signals, where the used network is named residual and multiscale spatio-temporal convolution neural network (RAMST-CNN). Combined with some popular techniques in deep learning, including residual learning (RL), multi-scale grouping convolution (MGC), global average pooling (GAP) and batch normalization (BN), RAMST-CNN has powerful spatio-temporal feature extraction ability as it achieves task-independence that avoids the complexity of selecting and extracting features manually. Experiments were carried out on multiple datasets, the results of which were compared with methods from other studies. The results show that the proposed method has a higher recognition accuracy even though the network it is based on is lightweight.

  • Sequences with Low Partial-Period Autocorrelation Sidelobes Constructed via Optimization Method

    Mingxing ZHANG  Zhengchun ZHOU  Meng YANG  Haode YAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E104-A No:2
      Page(s):
    384-391

    The partial-period autocorrelation of sequences is an important performance measure of communication systems employing them, but it is notoriously difficult to be analyzed. In this paper, we propose an algorithm to design unimodular sequences with low partial-period autocorrelations via directly minimizing the partial-period integrated sidelobe level (PISL). The proposed algorithm is inspired by the monotonic minimizer for integrated sidelobe level (MISL) algorithm. Then an acceleration scheme is considered to further accelerate the algorithms. Numerical experiments show that the proposed algorithm can effectively generate sequences with lower partial-period peak sidelobe level (PPSL) compared with the well-known Zadoff-Chu sequences.

  • On Traffic Flow Evaluation for a Multimodal Transport Society

    Go ISHII  Takaaki HASEGAWA  Daichi CHONO  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    357-365

    In this paper, we build a microscopic simulator of traffic flow in a three-modal transport society for pedestrians/slow vehicles/vehicles (P/SV/V) to evaluate a post P/V society. The simulator assumes that the SV includes bicycles and micro electric vehicles, whose speed is strictly and mechanically limited up to 30 km/h. In addition, this simulator adopts an SV overtaking model. Modal shifts caused by modal diversity requires new valuation indexes. The simulator has a significant feature of a traveler-based traffic demand simulation not a vehicle-based traffic demand simulation as well as new evaluation indexes. New assessment taking this situation into account is conducted and the results explain new aspects of traffic flow in a three-mode transport society.

  • Neural Architecture Search for Convolutional Neural Networks with Attention

    Kohei NAKAI  Takashi MATSUBARA  Kuniaki UEHARA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/10/26
      Vol:
    E104-D No:2
      Page(s):
    312-321

    The recent development of neural architecture search (NAS) has enabled us to automatically discover architectures of neural networks with high performance within a few days. Convolutional neural networks extract fruitful features by repeatedly applying standard operations (convolutions and poolings). However, these operations also extract useless or even disturbing features. Attention mechanisms enable neural networks to discard information of no interest, having achieved the state-of-the-art performance. While a variety of attentions for CNNs have been proposed, current NAS methods have paid a little attention to them. In this study, we propose a novel NAS method that searches attentions as well as operations. We examined several patterns to arrange attentions and operations, and found that attentions work better when they have their own search space and follow operations. We demonstrate the superior performance of our method in experiments on CIFAR-10, CIFAR-100, and ImageNet datasets. The found architecture achieved lower classification error rates and required fewer parameters compared to those found by current NAS methods.

1361-1380hit(20498hit)