The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1281-1300hit(20498hit)

  • Security-Reliability Tradeoff for Joint Relay-User Pair and Friendly Jammer Selection with Channel Estimation Error in Internet-of-Things

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Xiaochen LIU  Nan SHA  Kui XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/22
      Vol:
    E104-B No:6
      Page(s):
    686-695

    In this paper, we explore the physical layer security of an Internet of Things (IoT) network comprised of multiple relay-user pairs in the presence of multiple malicious eavesdroppers and channel estimation error (CEE). In order to guarantee secure transmission with channel estimation error, we propose a channel estimation error oriented joint relay-user pair and friendly jammer selection (CEE-JRUPaFJS) scheme to improve the physical layer security of IoT networks. For the purpose of comparison, the channel estimation error oriented traditional round-robin (CEE-TRR) scheme and the channel estimation error oriented traditional pure relay-user pair selection (CEE-TPRUPS) scheme are considered as benchmark schemes. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the CEE-TRR and CEE-TPRUPS schemes as well as the CEE-JRUPaFJS scheme are derived over Rayleigh fading channels, which are employed to characterize network reliability and security, respectively. Moreover, the security-reliability tradeoff (SRT) is analyzed as a metric to evaluate the tradeoff performance of CEE-JRUPaFJS scheme. It is verified that the proposed CEE-JRUPaFJS scheme is superior to both the CEE-TRR and CEE-TPRUPS schemes in terms of SRT, which demonstrates our proposed CEE-JRUPaFJS scheme are capable of improving the security and reliability performance of IoT networks in the face of multiple eavesdroppers. Moreover, as the number of relay-user pairs increases, CEE-TPRUPS and CEE-JRUPaFJS schemes offer significant increases in SRT. Conversely, with an increasing number of eavesdroppers, the SRT of all these three schemes become worse.

  • Characterization of Nonlinear Optical Chromophores Having Tricyanopyrroline Acceptor Unit and Amino Benzene Donor Unit with or without a Benzyloxy Group

    Toshiki YAMADA  Yoshihiro TAKAGI  Chiyumi YAMADA  Akira OTOMO  

     
    BRIEF PAPER

      Pubricized:
    2020/09/18
      Vol:
    E104-C No:6
      Page(s):
    184-187

    The optical properties of new tricyanopyrroline (TCP)-based chromophores with a benzyloxy group bound to aminobenzene donor unit were characterized by hyper-Rayleigh scattering (HRS), absorption spectrum, and 1H-NMR measurements, and the influence of the benzyloxy group on TCP-based chromophores was discussed based on the data. A positive effect of NLO properties was found in TCP-based NLO chromophores with a benzyloxy group compared with benchmark NLO chromophores without the benzyloxy group, suggesting an influence of intra-molecular hydrogen bond. Furthermore, we propose a formation of double intra-molecular hydrogen bonds in the TCP chromophore with monoene as the π-conjugation bridge and aminobenzene with a benzyloxy group as the donor unit.

  • Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Takashi YOSHIDA  

     
    BRIEF PAPER

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:6
      Page(s):
    192-193

    It is found that the electrical resistance-length characteristic in an electroactive supercoiled polymer artificial muscle strongly depends on the temperature. This may come from the thermal expansion of coils in the artificial muscle, which increases the contact area of neighboring coils and results in a lower electrical resistance at a higher temperature. On the other hand, the electrical resistance-length characteristic collected during electrical driving seriously deviates from those collected at constant temperatures. Inhomogeneous heating during electrical driving seems to be a key for the deviation.

  • An Area-Efficient Recurrent Neural Network Core for Unsupervised Time-Series Anomaly Detection Open Access

    Takuya SAKUMA  Hiroki MATSUTANI  

     
    PAPER

      Pubricized:
    2020/12/15
      Vol:
    E104-C No:6
      Page(s):
    247-256

    Since most sensor data depend on each other, time-series anomaly detection is one of practical applications of IoT devices. Such tasks are handled by Recurrent Neural Networks (RNNs) with a feedback structure, such as Long Short Term Memory. However, their learning phase based on Stochastic Gradient Descent (SGD) is computationally expensive for such edge devices. This issue is addressed by executing their learning on high-performance server machines, but it introduces a communication overhead and additional power consumption. On the other hand, Recursive Least-Squares Echo State Network (RLS-ESN) is a simple RNN that can be trained at low cost using the least-squares method rather than SGD. In this paper, we propose its area-efficient hardware implementation for edge devices and adapt it to human activity anomaly detection as an example of interdependent time-series sensor data. The model is implemented in Verilog HDL, synthesized with a 45 nm process technology, and evaluated in terms of the anomaly capability, hardware amount, and performance. The evaluation results demonstrate that the RLS-ESN core with a feedback structure is more robust to hyper parameters than an existing Online Sequential Extreme Learning Machine (OS-ELM) core. It consumes only 1.25 times larger hardware amount and 1.11 times longer latency than the existing OS-ELM core.

  • On the Efficacy of Scan Chain Grouping for Mitigating IR-Drop-Induced Test Data Corruption

    Yucong ZHANG  Stefan HOLST  Xiaoqing WEN  Kohei MIYASE  Seiji KAJIHARA  Jun QIAN  

     
    PAPER-Dependable Computing

      Pubricized:
    2021/03/08
      Vol:
    E104-D No:6
      Page(s):
    816-827

    Loading test vectors and unloading test responses in shift mode during scan testing cause many scan flip-flops to switch simultaneously. The resulting shift switching activity around scan flip-flops can cause excessive local IR-drop that can change the states of some scan flip-flops, leading to test data corruption. A common approach solving this problem is partial-shift, in which multiple scan chains are formed and only one group of the scan chains is shifted at a time. However, previous methods based on this approach use random grouping, which may reduce global shift switching activity, but may not be optimized to reduce local shift switching activity, resulting in remaining high risk of test data corruption even when partial-shift is applied. This paper proposes novel algorithms (one optimal and one heuristic) to group scan chains, focusing on reducing local shift switching activity around scan flip-flops, thus reducing the risk of test data corruption. Experimental results on all large ITC'99 benchmark circuits demonstrate the effectiveness of the proposed optimal and heuristic algorithms as well as the scalability of the heuristic algorithm.

  • Vision-Text Time Series Correlation for Visual-to-Language Story Generation

    Rizal Setya PERDANA  Yoshiteru ISHIDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/08
      Vol:
    E104-D No:6
      Page(s):
    828-839

    Automatic generation of textual stories from visual data representation, known as visual storytelling, is a recent advancement in the problem of images-to-text. Instead of using a single image as input, visual storytelling processes a sequential array of images into coherent sentences. A story contains non-visual concepts as well as descriptions of literal object(s). While previous approaches have applied external knowledge, our approach was to regard the non-visual concept as the semantic correlation between visual modality and textual modality. This paper, therefore, presents new features representation based on a canonical correlation analysis between two modalities. Attention mechanism are adopted as the underlying architecture of the image-to-text problem, rather than standard encoder-decoder models. Canonical Correlation Attention Mechanism (CAAM), the proposed end-to-end architecture, extracts time series correlation by maximizing the cross-modal correlation. Extensive experiments on VIST dataset ( http://visionandlanguage.net/VIST/dataset.html ) were conducted to demonstrate the effectiveness of the architecture in terms of automatic metrics, with additional experiments show the impact of modality fusion strategy.

  • Two-Sided LPC-Based Speckle Noise Removal for Laser Speech Detection Systems

    Yahui WANG  Wenxi ZHANG  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/03/17
      Vol:
    E104-D No:6
      Page(s):
    850-862

    Laser speech detection uses a non-contact Laser Doppler Vibrometry (LDV)-based acoustic sensor to obtain speech signals by precisely measuring voice-generated surface vibrations. Over long distances, however, the detected signal is very weak and full of speckle noise. To enhance the quality and intelligibility of the detected signal, we designed a two-sided Linear Prediction Coding (LPC)-based locator and interpolator to detect and replace speckle noise. We first studied the characteristics of speckle noise in detected signals and developed a binary-state statistical model for speckle noise generation. A two-sided LPC-based locator was then designed to locate the polluted samples, composed of an inverse decorrelator, nonlinear filter and threshold estimator. This greatly improves the detectability of speckle noise and avoids false/missed detection by improving the noise-to-signal-ratio (NSR). Finally, samples from both sides of the speckle noise were used to estimate the parameters of the interpolator and to code samples for replacing the polluted samples. Real-world speckle noise removal experiments and simulation-based comparative experiments were conducted and the results show that the proposed method is better able to locate speckle noise in laser detected speech and highly effective at replacing it.

  • A Weighted Forward-Backward Spatial Smoothing DOA Estimation Algorithm Based on TLS-ESPRIT

    Manlin XIAO  Zhibo DUAN  Zhenglong YANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2021/03/16
      Vol:
    E104-D No:6
      Page(s):
    881-884

    Based on TLS-ESPRIT algorithm, this paper proposes a weighted spatial smoothing DOA estimation algorithm to address the problem that the conventional TLS-ESPRIT algorithm will be disabled to estimate the direction of arrival (DOA) in the scenario of coherent sources. The proposed method divides the received signal array into several subarrays with special structural feature. Then, utilizing these subarrays, this paper constructs the new weighted covariance matrix to estimate the DOA based on TLS-ESPRIT. The auto-correlation and cross-correlation information of subarrays in the proposed algorithm is extracted sufficiently, improving the orthogonality between the signal subspace and the noise subspace so that the DOA of coherent sources could be estimated accurately. The simulations show that the proposed algorithm is superior to the conventional spatial smoothing algorithms under different signal to noise ratio (SNR) and snapshot numbers with coherent sources.

  • Building Change Detection by Using Past Map Information and Optical Aerial Images

    Motohiro TAKAGI  Kazuya HAYASE  Masaki KITAHARA  Jun SHIMAMURA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/23
      Vol:
    E104-D No:6
      Page(s):
    897-900

    This paper proposes a change detection method for buildings based on convolutional neural networks. The proposed method detects building changes from pairs of optical aerial images and past map information concerning buildings. Using high-resolution image pair and past map information seamlessly, the proposed method can capture the building areas more precisely compared to a conventional method. Our experimental results show that the proposed method outperforms the conventional change detection method that uses optical aerial images to detect building changes.

  • Differentially Private Neural Networks with Bounded Activation Function

    Kijung JUNG  Hyukki LEE  Yon Dohn CHUNG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/18
      Vol:
    E104-D No:6
      Page(s):
    905-908

    Deep learning has shown outstanding performance in various fields, and it is increasingly deployed in privacy-critical domains. If sensitive data in the deep learning model are exposed, it can cause serious privacy threats. To protect individual privacy, we propose a novel activation function and stochastic gradient descent for applying differential privacy to deep learning. Through experiments, we show that the proposed method can effectively protect the privacy and the performance of proposed method is better than the previous approaches.

  • A Partial Matching Convolution Neural Network for Source Retrieval of Plagiarism Detection

    Leilei KONG  Yong HAN  Haoliang QI  Zhongyuan HAN  

     
    LETTER-Natural Language Processing

      Pubricized:
    2021/03/03
      Vol:
    E104-D No:6
      Page(s):
    915-918

    Source retrieval is the primary task of plagiarism detection. It searches the documents that may be the sources of plagiarism to a suspicious document. The state-of-the-art approaches usually rely on the classical information retrieval models, such as the probability model or vector space model, to get the plagiarism sources. However, the goal of source retrieval is to obtain the source documents that contain the plagiarism parts of the suspicious document, rather than to rank the documents relevant to the whole suspicious document. To model the “partial matching” between documents, this paper proposes a Partial Matching Convolution Neural Network (PMCNN) for source retrieval. In detail, PMCNN exploits a sequential convolution neural network to extract the plagiarism patterns of contiguous text segments. The experimental results on PAN 2013 and PAN 2014 plagiarism source retrieval corpus show that PMCNN boosts the performance of source retrieval significantly, outperforming other state-of-the-art document models.

  • Automatically Generated Data Mining Tools for Complex System Operator's Condition Detection Using Non-Contact Vital Sensing Open Access

    Shakhnaz AKHMEDOVA  Vladimir STANOVOV  Sophia VISHNEVSKAYA  Chiori MIYAJIMA  Yukihiro KAMIYA  

     
    INVITED PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2020/12/24
      Vol:
    E104-B No:6
      Page(s):
    571-579

    This study is focused on the automated detection of a complex system operator's condition. For example, in this study a person's reaction while listening to music (or not listening at all) was determined. For this purpose various well-known data mining tools as well as ones developed by authors were used. To be more specific, the following techniques were developed and applied for the mentioned problems: artificial neural networks and fuzzy rule-based classifiers. The neural networks were generated by two modifications of the Differential Evolution algorithm based on the NSGA and MOEA/D schemes, proposed for solving multi-objective optimization problems. Fuzzy logic systems were generated by the population-based algorithm called Co-Operation of Biology Related Algorithms or COBRA. However, firstly each person's state was monitored. Thus, databases for problems described in this study were obtained by using non-contact Doppler sensors. Experimental results demonstrated that automatically generated neural networks and fuzzy rule-based classifiers can properly determine the human condition and reaction. Besides, proposed approaches outperformed alternative data mining tools. However, it was established that fuzzy rule-based classifiers are more accurate and interpretable than neural networks. Thus, they can be used for solving more complex problems related to the automated detection of an operator's condition.

  • Cuffless Blood Pressure Monitors: Principles, Standards and Approval for Medical Use Open Access

    Toshiyo TAMURA  

     
    INVITED PAPER-Sensing

      Pubricized:
    2020/12/24
      Vol:
    E104-B No:6
      Page(s):
    580-586

    Cuffless blood pressure (BP) monitors are noninvasive devices that measure systolic and diastolic BP without an inflatable cuff. They are easy to use, safe, and relatively accurate for resting-state BP measurement. Although commercially available from online retailers, BP monitors must be approved or certificated by medical regulatory bodies for clinical use. Cuffless BP monitoring devices also need to be approved; however, only the Institute of Electrical and Electronics Engineers (IEEE) certify these devices. In this paper, the principles of cuffless BP monitors are described, and the current situation regarding BP monitor standards and approval for medical use is discussed.

  • Analysis and Design of Aggregate Demand Response Systems Based on Controllability Open Access

    Kazuhiro SATO  Shun-ichi AZUMA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2020/12/01
      Vol:
    E104-A No:6
      Page(s):
    940-948

    We address analysis and design problems of aggregate demand response systems composed of various consumers based on controllability to facilitate to design automated demand response machines that are installed into consumers to automatically respond to electricity price changes. To this end, we introduce a controllability index that expresses the worst-case error between the expected total electricity consumption and the electricity supply when the best electricity price is chosen. The analysis problem using the index considers how to maximize the controllability of the whole consumer group when the consumption characteristic of each consumer is not fixed. In contrast, the design problem considers the whole consumer group when the consumption characteristics of a part of the group are fixed. By solving the analysis problem, we first clarify how the controllability, average consumption characteristics of all consumers, and the number of selectable electricity prices are related. In particular, the minimum value of the controllability index is determined by the number of selectable electricity prices. Next, we prove that the design problem can be solved by a simple linear optimization. Numerical experiments demonstrate that our results are able to increase the controllability of the overall consumer group.

  • Evaluation of the Dynamic Characteristics of Microdroplets by Vibration

    Kosuke FUJISHIRO  Satomitsu IMAI  

     
    BRIEF PAPER

      Pubricized:
    2020/12/01
      Vol:
    E104-C No:6
      Page(s):
    210-212

    In fields such as medicine and chemistry, methods for transporting microdroplets are currently necessitated, which include the analysis of reagents, mixing, and separation. As microdroplets become finer, their movement becomes difficult to control as a result of surface tension. This has resulted in the use of an excessive amount of reagents. In this study, we evaluated the dynamic characteristics of microdroplets and the excitation force. Microdroplets were dropped onto a tilted glass substrate, and the displacement of the microdroplets was measured while changing the droplet amount, vibration frequency, and vibration direction. Moreover, the behavior of the droplet just before it started to move was observed, and the relationship between the displacement of the minute droplet and the vibration force was compared and examined.

  • Deep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss

    Byeonghak KIM  Murray LOEW  David K. HAN  Hanseok KO  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/01/28
      Vol:
    E104-D No:5
      Page(s):
    776-780

    To date, many studies have employed clustering for the classification of unlabeled data. Deep separate clustering applies several deep learning models to conventional clustering algorithms to more clearly separate the distribution of the clusters. In this paper, we employ a convolutional autoencoder to learn the features of input images. Following this, k-means clustering is conducted using the encoded layer features learned by the convolutional autoencoder. A center loss function is then added to aggregate the data points into clusters to increase the intra-cluster homogeneity. Finally, we calculate and increase the inter-cluster separability. We combine all loss functions into a single global objective function. Our new deep clustering method surpasses the performance of existing clustering approaches when compared in experiments under the same conditions.

  • Spatial Single Dimensional Mode Based De-Multiplexer Using Slab Waveguide

    Haisong JIANG  Mahmoud NASEF  Kiichi HAMAMOTO  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2020/10/19
      Vol:
    E104-C No:5
      Page(s):
    164-167

    This paper reports a single dimensional mode based multiplexer / de-multiplexer using the slab waveguide to realize high modes multiplexing and high integration in the non-MIMO (multi-in multi-out) multimode transmission system. A sufficient mode crosstalk of -20 dB was obtained by selecting suitable parameters of the spacing between the connecting positions of each arrayed waveguide Di, the radius slab waveguide R0 and lateral V-parameter.

  • A Throughput Drop Estimation Model for Concurrent Communications under Partially Overlapping Channels without Channel Bonding and Its Application to Channel Assignment in IEEE 802.11n WLAN

    Kwenga ISMAEL MUNENE  Nobuo FUNABIKI  Hendy BRIANTORO  Md. MAHBUBUR RAHMAN  Fatema AKHTER  Minoru KURIBAYASHI  Wen-Chung KAO  

     
    PAPER

      Pubricized:
    2021/02/16
      Vol:
    E104-D No:5
      Page(s):
    585-596

    Currently, the IEEE 802.11n wireless local-area network (WLAN) has been extensively deployed world-wide. For the efficient channel assignment to access-points (APs) from the limited number of partially overlapping channels (POCs) at 2.4GHz band, we have studied the throughput drop estimation model for concurrently communicating links using the channel bonding (CB). However, non-CB links should be used in dense WLANs, since the CB links often reduce the transmission capacity due to high interferences from other links. In this paper, we examine the throughput drop estimation model for concurrently communicating links without using the CB in 802.11n WLAN, and its application to the POC assignment to the APs. First, we verify the model accuracy through experiments in two network fields. The results show that the average error is 9.946% and 6.285% for the high and low interference case respectively. Then, we verify the effectiveness of the POC assignment to the APs using the model through simulations and experiments. The results show that the model improves the smallest throughput of a host by 22.195% and the total throughput of all the hosts by 22.196% on average in simulations for three large topologies, and the total throughput by 12.89% on average in experiments for two small topologies.

  • Single-Letter Characterizations for Information Erasure under Restriction on the Output Distribution

    Naruaki AMADA  Hideki YAGI  

     
    PAPER-Information Theory

      Pubricized:
    2020/11/09
      Vol:
    E104-A No:5
      Page(s):
    805-813

    In order to erase data including confidential information stored in storage devices, an unrelated and random sequence is usually overwritten, which prevents the data from being restored. The problem of minimizing the cost for information erasure when the amount of information leakage of the confidential information should be less than or equal to a constant asymptotically has been introduced by T. Matsuta and T. Uyematsu. Whereas the minimum cost for overwriting has been given for general sources, a single-letter characterization for stationary memoryless sources is not easily derived. In this paper, we give single-letter characterizations for stationary memoryless sources under two types of restrictions: one requires the output distribution of the encoder to be independent and identically distributed (i.i.d.) and the other requires it to be memoryless but not necessarily i.i.d. asymptotically. The characterizations indicate the relation among the amount of information leakage, the minimum cost for information erasure and the rate of the size of uniformly distributed sequences. The obtained results show that the minimum costs are different between these restrictions.

  • Topological Optimization Problem for a Network System with Separate Subsystems

    Yoshihiro MURASHIMA  Taishin NAKAMURA  Hisashi YAMAMOTO  Xiao XIAO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2020/10/27
      Vol:
    E104-A No:5
      Page(s):
    797-804

    In a network topology design problem, it is important to analyze the reliability and construction cost of complex network systems. This paper addresses a topological optimization problem of minimizing the total cost of a network system with separate subsystems under a reliability constraint. To solve this problem, we develop three algorithms. The first algorithm finds an exact solution. The second one finds an exact solution, specialized for a system with identical subsystems. The third one is a heuristic algorithm, which finds an approximate solution when a network system has several identical subsystems. We also conduct numerical experiments and demonstrate the efficacy and efficiency of the developed algorithms.

1281-1300hit(20498hit)