1-15hit |
Kohei MIYASE Xiaoqing WEN Seiji KAJIHARA Yuta YAMATO Atsushi TAKASHIMA Hiroshi FURUKAWA Kenji NODA Hideaki ITO Kazumi HATAYAMA Takashi AIKYO Kewal K. SALUJA
Capture-safety, (defined as the avoidance of timing error due to unduly high launch switching activity in capture mode during at-speed scan testing), is critical in avoiding test induced yield loss. Although several sophisticated techniques are available for reducing capture IR-drop, there are few complete capture-safe test generation flows. This paper addresses the problem by proposing a novel and practical capture-safe test generation flow, featuring (1) a complete capture-safe test generation flow; (2) reliable capture-safety checking; and (3) effective capture-safety improvement by combining X-bit identification & X-filling with low launch-switching-activity test generation. The proposed flow minimizes test data inflation and is compatible with existing automatic test pattern generation (ATPG) flow. The techniques proposed in the flow achieve capture-safety without changing the circuit-under-test or the clocking scheme.
Seiji KAJIHARA Koji ISHIDA Kohei MIYASE
This paper presents a test vector modification method for reducing average power dissipation during test application for a full-scan circuit. The method first identifies a set of don't care (X) inputs of given test vectors, to which either logic value 0 or 1 can be assigned without losing fault coverage. Then, the method reassigns logic values to the X inputs so as to decrease switching activity of the circuit during scan shifting. Experimental results for benchmark circuits show the proposed method could decrease switching activity of a given test set to 45% of the original test sets in average.
Xiaoqing WEN Seiji KAJIHARA Kohei MIYASE Yuta YAMATO Kewal K. SALUJA Laung-Terng WANG Kozo KINOSHITA
This paper proposes a new per-test fault diagnosis method based on the X-fault model. The X-fault model can represent all possible faulty behaviors of a physical defect or defects in a gate and/or on its fanout branches by assigning different X symbols assigned to the fanout branches. A partial symbolic fault simulation method is proposed for the X-fault model. Then, a novel technique is proposed for extracting more diagnostic information by analyzing matching details between observed and simulated responses. Furthermore, a unique method is proposed to score the results of fault diagnosis. Experimental results on benchmark circuits demonstrate the superiority of the proposed method over conventional per-test fault diagnosis based on the stuck-at fault model.
Fuqiang LI Xiaoqing WEN Kohei MIYASE Stefan HOLST Seiji KAJIHARA
Excessive IR-drop in capture mode during at-speed scan testing may cause timing errors for defect-free circuits, resulting in undue test yield loss. Previous solutions for achieving capture-power-safety adjust the switching activity around logic paths, especially long sensitized paths, in order to reduce the impact of IR-drop. However, those solutions ignore the impact of IR-drop on clock paths, namely test clock stretch; as a result, they cannot accurately achieve capture-power-safety. This paper proposes a novel scheme, called LP-CP-aware ATPG, for generating high-quality capture-power-safe at-speed scan test vectors by taking into consideration the switching activity around both logic and clock paths. This scheme features (1) LP-CP-aware path classification for characterizing long sensitized paths by considering the IR-drop impact on both logic and clock paths; (2) LP-CP-aware X-restoration for obtaining more effective X-bits by backtracing from both logic and clock paths; (3) LP-CP-aware X-filling for using different strategies according to the positions of X-bits in test cubes. Experimental results on large benchmark circuits demonstrate the advantages of LP-CP-aware ATPG, which can more accurately achieve capture-power-safety without significant test vector count inflation and test quality loss.
Yucong ZHANG Stefan HOLST Xiaoqing WEN Kohei MIYASE Seiji KAJIHARA Jun QIAN
Loading test vectors and unloading test responses in shift mode during scan testing cause many scan flip-flops to switch simultaneously. The resulting shift switching activity around scan flip-flops can cause excessive local IR-drop that can change the states of some scan flip-flops, leading to test data corruption. A common approach solving this problem is partial-shift, in which multiple scan chains are formed and only one group of the scan chains is shifted at a time. However, previous methods based on this approach use random grouping, which may reduce global shift switching activity, but may not be optimized to reduce local shift switching activity, resulting in remaining high risk of test data corruption even when partial-shift is applied. This paper proposes novel algorithms (one optimal and one heuristic) to group scan chains, focusing on reducing local shift switching activity around scan flip-flops, thus reducing the risk of test data corruption. Experimental results on all large ITC'99 benchmark circuits demonstrate the effectiveness of the proposed optimal and heuristic algorithms as well as the scalability of the heuristic algorithm.
Seiji KAJIHARA Kenjiro TANIGUCHI Kohei MIYASE Irith POMERANZ Sudhakar M. REDDY
This paper describes a method of test data compression for a given test set using statistical encoding. In order to maximize the effectiveness of statistical encoding, the method first converts some specified input values in the test set to unspecified ones without losing fault coverage, and then reassigns appropriate logic values to the unspecified inputs. Experimental results for ISCAS-89 benchmark circuits show that the proposed method can on the average reduce the test data volume to less than 25% of that required for the original test set.
Kohei MIYASE Kenta TERASHIMA Xiaoqing WEN Seiji KAJIHARA Sudhakar M. REDDY
If a test set for more complex faults than stuck-at faults is generated, higher defect coverage would be obtained. Such a test set, however, would have a large number of test vectors, and hence the test costs would go up. In this paper we propose a method to detect bridge defects with a test set initially generated for stuck-at faults in a full scan sequential circuit. The proposed method doesn't add new test vectors to the test set but modifies test vectors. Therefore there are no negative impacts on test data volume and test application time. The initial fault coverage for stuck-at faults of the test set is guaranteed with modified test vectors. In this paper we focus on detecting as many as possible non-feedback AND-type, OR-type and 4-way bridging faults, respectively. Experimental results show that the proposed method increases the defect coverage.
Senling WANG Yasuo SATO Seiji KAJIHARA Kohei MIYASE
In this paper we propose a novel method to reduce power consumption during scan testing caused by test responses at scan-out operation for logic BIST. The proposed method overwrites some flip-flops (FFs) values before starting scan-shift so as to reduce the switching activity at scan-out operation. In order to relax the fault coverage loss caused by filling new FF values before observing the capture values at the FFs, the method employs multi-cycle scan test with partial observation. For deriving larger scan-out power reduction with less fault coverage loss and preventing hardware overhead increase, the FFs to be filled are selected in a predetermined ratio. For overwriting values, we prepare three value filling methods so as to achieve larger scan-out power reduction. Experiment for ITC99 benchmark circuits shows the effectiveness of the methods. Nearly 51% reduction of scan-out power and 57% reduction of peak scan-out power are achieved with little fault coverage loss for 20% FFs selection, while hardware overhead is little that only 0.05%.
Yuta YAMATO Xiaoqing WEN Kohei MIYASE Hiroshi FURUKAWA Seiji KAJIHARA
Power-aware X-filling is a preferable approach to avoiding IR-drop-induced yield loss in at-speed scan testing. However, the ability of previous X-filling methods to reduce launch switching activity may be unsatisfactory, due to low effect (insufficient and global-only reduction) and/or low scalability (long CPU time). This paper addresses this reduction quality problem with a novel GA (Genetic Algorithm) based X-filling method, called GA-fill. Its goals are (1) to achieve both effectiveness and scalability in a more balanced manner and (2) to make the reduction effect of launch switching activity more concentrated on critical areas that have higher impact on IR-drop-induced yield loss. Evaluation experiments are being conducted on both benchmark and industrial circuits, and the results have demonstrated the usefulness of GA-fill.
Kohei MIYASE Kenji NODA Hideaki ITO Kazumi HATAYAMA Takashi AIKYO Yuta YAMATO Hiroshi FURUKAWA Xiaoqing WEN Seiji KAJIHARA
Test data modification based on test relaxation and X-filling is the preferred approach for reducing excessive IR-drop in at-speed scan testing to avoid test-induced yield loss. However, none of the existing test relaxation methods can control the distribution of identified don't care bits (X-bits), thus adversely affecting the effectiveness of IR-drop reduction. In this paper, we propose a novel test relaxation method, called Distribution-Controlled X-Identification (DC-XID), which controls the distribution of X-bits identified in a set of fully-specified test vectors for the purpose of effectively reducing IR-drop. Experiments on large industrial circuits demonstrate the effectiveness and practicality of the proposed method in reducing IR-drop, without lowering fault coverage, increasing test data volume and circuit size.
Xiaoqing WEN Seiji KAJIHARA Kohei MIYASE Tatsuya SUZUKI Kewal K. SALUJA Laung-Terng WANG Kozo KINOSHITA
High power dissipation can occur when the response to a test vector is captured by flip-flops in scan testing, resulting in excessive IR drop, which may cause significant capture-induced yield loss in the DSM era. This paper addresses this serious problem with a novel test generation method, featuring a unique algorithm that deterministically generates test cubes not only for fault detection but also for capture power reduction. Compared with previous methods that passively conduct X-filling for unspecified bits in test cubes generated only for fault detection, the new method achieves more capture power reduction with less test set inflation. Experimental results show its effectiveness.
Kohei MIYASE Xiaoqing WEN Hiroshi FURUKAWA Yuta YAMATO Seiji KAJIHARA Patrick GIRARD Laung-Terng WANG Mohammad TEHRANIPOOR
At-speed scan testing is susceptible to yield loss risk due to power supply noise caused by excessive launch switching activity. This paper proposes a novel two-stage scheme, namely CTX (Clock-Gating-Based Test Relaxation and X-Filling), for reducing switching activity when a test stimulus is launched. Test relaxation and X-filling are conducted (1) to make as many FFs as possible inactive by disabling corresponding clock control signals of clock-gating circuitry in Stage-1 (Clock-Disabling), and (2) to equalize the input and output values in Stage-2 of as many remaining active FFs as possible (FF-Silencing). CTX effectively reduces launch switching activity and thus yield loss risk even when only a small number of don't care (X) bits are present (as in test compression) without any impact on test data volume, fault coverage, performance, or circuit design.
Akihiro TOMITA Xiaoqing WEN Yasuo SATO Seiji KAJIHARA Kohei MIYASE Stefan HOLST Patrick GIRARD Mohammad TEHRANIPOOR Laung-Terng WANG
The applicability of at-speed scan-based logic built-in self-test (BIST) is being severely challenged by excessive capture power that may cause erroneous test responses even for good circuits. Different from conventional low-power BIST, this paper is the first to explicitly focus on achieving capture power safety with a novel and practical scheme, called capture-power-safe logic BIST (CPS-LBIST). The basic idea is to identify all possibly-erroneous test responses caused by excessive capture power and use the well-known approach of masking (bit-masking, slice-masking,vector-masking) to block them from reaching the multiple-input signature register(MISR). Experiments with large benchmark circuits and a large industrial circuit demonstrate that CPS-LBIST can achieve capture power safety with negligible impact on test quality and circuit overhead.
Kohei MIYASE Ryota SAKAI Xiaoqing WEN Masao ASO Hiroshi FURUKAWA Yuta YAMATO Seiji KAJIHARA
Test power has become a critical issue, especially for low-power devices with deeply optimized functional power profiles. Particularly, excessive capture power in at-speed scan testing may cause timing failures that result in test-induced yield loss. This has made capture-safety checking mandatory for test vectors. However, previous capture-safety checking metrics suffer from inadequate accuracy since they ignore the time relations among different transitions caused by a test vector in a circuit. This paper presents a novel metric called the Transition-Time-Relation-based (TTR) metric which takes transition time relations into consideration in capture-safety checking. Detailed analysis done on an industrial circuit has demonstrated the advantages of the TTR metric. Capture-safety checking with the TTR metric greatly improves the accuracy of test vector sign-off and low-capture-power test generation.
Yuta YAMATO Yusuke NAKAMURA Kohei MIYASE Xiaoqing WEN Seiji KAJIHARA
Per-test diagnosis based on the X-fault model is an effective approach for a circuit with physical defects of non-deterministic logic behavior. However, the extensive use of vias and buffers in a deep-submicron circuit and the unpredictable order relation among threshold voltages at the fanout branches of a gate have not been fully addressed by conventional per-test X-fault diagnosis. To take these factors into consideration, this paper proposes an improved per-test X-fault diagnosis method, featuring (1) an extended X-fault model to handle vias and buffers and (2) the use of occurrence probabilities of logic behaviors for a physical defect to handle the unpredictable relation among threshold voltages. Experimental results show the effectiveness of the proposed method.