The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1221-1240hit(20498hit)

  • Patent One-Stop Service Business Model Based on Scientific and Technological Resource Bundle

    Fanying ZHENG  Yangjian JI  Fu GU  Xinjian GU  Jin ZHANG  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1281-1291

    To address slow response and scattered resources in patent service, this paper proposes a one-stop service business model based on scientific and technological resource bundle. The proposed one-step model is composed of a project model, a resource bundle model and a service product model through Web Service integration. This paper describes the patent resource bundle model from the aspects of content and context, and designs the configuration of patent service products and patent resource bundle. The model is then applied to the patent service of the Yangtze River Delta urban agglomeration in China, and the monthly agent volume increased by 38.8%, and the average response time decreased by 14.3%. Besides, it is conducive to improve user satisfaction and resource sharing efficiency of urban agglomeration.

  • Remote Dynamic Reconfiguration of a Multi-FPGA System FiC (Flow-in-Cloud)

    Kazuei HIRONAKA  Kensuke IIZUKA  Miho YAMAKURA  Akram BEN AHMED  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1321-1331

    Multi-FPGA systems have been receiving a lot of attention as a low cost and energy efficient system for Multi-access Edge Computing (MEC). For such purpose, a bare-metal multi-FPGA system called FiC (Flow-in-Cloud) is under development. In this paper, we introduce the FiC multi FPGA cluster which is applied partial reconfiguration (PR) FPGA design flow to support online user defined accelerator replacement while executing FPGA interconnection network and its low-level multiple FPGA management software called remote PR manager. With the remote PR manager, the user can define the FiC FPGA cluster setup by JSON and control the cluster from user application with the cooperation of simple cluster management tool / library called ficmgr on the client host and REST API service provider called ficwww on Raspberry Pi 3 (RPi3) on each node. According to the evaluation results with a prototype FiC FPGA cluster system with 12 nodes, using with online application replacement by PR and on-the-fly FPGA bitstream compression, the time for FPGA bitstream distribution was reduced to 1/17 and the total cluster setup time was reduced by 21∼57% than compared to cluster setup with full configuration FPGA bitstream.

  • FCA-BNN: Flexible and Configurable Accelerator for Binarized Neural Networks on FPGA

    Jiabao GAO  Yuchen YAO  Zhengjie LI  Jinmei LAI  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/05/19
      Vol:
    E104-D No:8
      Page(s):
    1367-1377

    A series of Binarized Neural Networks (BNNs) show the accepted accuracy in image classification tasks and achieve the excellent performance on field programmable gate array (FPGA). Nevertheless, we observe existing designs of BNNs are quite time-consuming in change of the target BNN and acceleration of a new BNN. Therefore, this paper presents FCA-BNN, a flexible and configurable accelerator, which employs the layer-level configurable technique to execute seamlessly each layer of target BNN. Initially, to save resource and improve energy efficiency, the hardware-oriented optimal formulas are introduced to design energy-efficient computing array for different sizes of padded-convolution and fully-connected layers. Moreover, to accelerate the target BNNs efficiently, we exploit the analytical model to explore the optimal design parameters for FCA-BNN. Finally, our proposed mapping flow changes the target network by entering order, and accelerates a new network by compiling and loading corresponding instructions, while without loading and generating bitstream. The evaluations on three major structures of BNNs show the differences between inference accuracy of FCA-BNN and that of GPU are just 0.07%, 0.31% and 0.4% for LFC, VGG-like and Cifar-10 AlexNet. Furthermore, our energy-efficiency results achieve the results of existing customized FPGA accelerators by 0.8× for LFC and 2.6× for VGG-like. For Cifar-10 AlexNet, FCA-BNN achieves 188.2× and 60.6× better than CPU and GPU in energy efficiency, respectively. To the best of our knowledge, FCA-BNN is the most efficient design for change of the target BNN and acceleration of a new BNN, while keeps the competitive performance.

  • Improvement of CT Reconstruction Using Scattered X-Rays

    Shota ITO  Naohiro TODA  

     
    PAPER-Biological Engineering

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1378-1385

    A neural network that outputs reconstructed images based on projection data containing scattered X-rays is presented, and the proposed scheme exhibits better accuracy than conventional computed tomography (CT), in which the scatter information is removed. In medical X-ray CT, it is a common practice to remove scattered X-rays using a collimator placed in front of the detector. In this study, the scattered X-rays were assumed to have useful information, and a method was devised to utilize this information effectively using a neural network. Therefore, we generated 70,000 projection data by Monte Carlo simulations using a cube comprising 216 (6 × 6 × 6) smaller cubes having random density parameters as the target object. For each projection simulation, the densities of the smaller cubes were reset to different values, and detectors were deployed around the target object to capture the scattered X-rays from all directions. Then, a neural network was trained using these projection data to output the densities of the smaller cubes. We confirmed through numerical evaluations that the neural-network approach that utilized scattered X-rays reconstructed images with higher accuracy than did the conventional method, in which the scattered X-rays were removed. The results of this study suggest that utilizing the scattered X-ray information can help significantly reduce patient dosing during imaging.

  • DCUIP Poisoning Attack in Intel x86 Processors

    Youngjoo SHIN  

     
    LETTER-Dependable Computing

      Pubricized:
    2021/05/13
      Vol:
    E104-D No:8
      Page(s):
    1386-1390

    Cache prefetching technique brings huge benefits to performance improvement, but it comes at the cost of microarchitectural security in processors. In this letter, we deep dive into internal workings of a DCUIP prefetcher, which is one of prefetchers equipped in Intel processors. We discover that a DCUIP table is shared among different execution contexts in hyperthreading-enabled processors, which leads to another microarchitectural vulnerability. By exploiting the vulnerability, we propose a DCUIP poisoning attack. We demonstrate an AES encryption key can be extracted from an AES-NI implementation by mounting the proposed attack.

  • A Two-Stage Attention Based Modality Fusion Framework for Multi-Modal Speech Emotion Recognition

    Dongni HU  Chengxin CHEN  Pengyuan ZHANG  Junfeng LI  Yonghong YAN  Qingwei ZHAO  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2021/04/30
      Vol:
    E104-D No:8
      Page(s):
    1391-1394

    Recently, automated recognition and analysis of human emotion has attracted increasing attention from multidisciplinary communities. However, it is challenging to utilize the emotional information simultaneously from multiple modalities. Previous studies have explored different fusion methods, but they mainly focused on either inter-modality interaction or intra-modality interaction. In this letter, we propose a novel two-stage fusion strategy named modality attention flow (MAF) to model the intra- and inter-modality interactions simultaneously in a unified end-to-end framework. Experimental results show that the proposed approach outperforms the widely used late fusion methods, and achieves even better performance when the number of stacked MAF blocks increases.

  • An Algebraic Approach to Verifying Galois-Field Arithmetic Circuits with Multiple-Valued Characteristics

    Akira ITO  Rei UENO  Naofumi HOMMA  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/28
      Vol:
    E104-D No:8
      Page(s):
    1083-1091

    This study presents a formal verification method for Galois-field (GF) arithmetic circuits with the characteristics of more than two values. The proposed method formally verifies the correctness of circuit functionality (i.e., the input-output relations given as GF-polynomials) by checking the equivalence between a specification and a gate-level netlist. We represent a netlist using simultaneous algebraic equations and solve them based on a novel polynomial reduction method that can be efficiently applied to arithmetic over extension fields $mathbb{F}_{p^m}$, where the characteristic p is larger than two. By using the reverse topological term order to derive the Gröbner basis, our method can complete the verification, even when a target circuit includes bugs. In addition, we introduce an extension of the Galois-Field binary moment diagrams to perform the polynomial reductions faster. Our experimental results show that the proposed method can efficiently verify practical $mathbb{F}_{p^m}$ arithmetic circuits, including those used in modern cryptography. Moreover, we demonstrate that the extended polynomial reduction technique can enable verification that is up to approximately five times faster than the original one.

  • Scientific and Technological Resource Sharing Model Based on Few-Shot Relational Learning

    Yangshengyan LIU  Fu GU  Yangjian JI  Yijie WU  Jianfeng GUO  Xinjian GU  Jin ZHANG  

     
    PAPER

      Pubricized:
    2021/04/21
      Vol:
    E104-D No:8
      Page(s):
    1302-1312

    Resource sharing is to ensure required resources available for their demanders. However, due to the lack of proper sharing model, the current sharing rate of the scientific and technological resources is low, impeding technological innovation and value chain development. Here we propose a novel method to share scientific and technological resources by storing resources as nodes and correlations as links to form a complex network. We present a few-shot relational learning model to solve the cold-start and long-tail problems that are induced by newly added resources. Experimentally, using NELL-One and Wiki-One datasets, our one-shot results outperform the baseline framework - metaR by 40.2% and 4.1% on MRR in Pre-Train setting. We also show two practical applications, a resource graph and a resource map, to demonstrate how the complex network helps resource sharing.

  • Transmission Loss of Optical Fibers; Achievements in Half a Century Open Access

    Hiroo KANAMORI  

     
    INVITED PAPER-Optical Fiber for Communications

      Pubricized:
    2021/02/15
      Vol:
    E104-B No:8
      Page(s):
    922-933

    This paper reviews the evolutionary process that reduced the transmission loss of silica optical fibers from the report of 20dB/km by Corning in 1970 to the current record-low loss. At an early stage, the main effort was to remove impurities especially hydroxy groups for fibers with GeO2-SiO2 core, resulting in the loss of 0.20dB/km in 1980. In order to suppress Rayleigh scattering due to composition fluctuation, pure-silica-core fibers were developed, and the loss of 0.154dB/km was achieved in 1986. As the residual main factor of the loss, Rayleigh scattering due to density fluctuation was actively investigated by utilizing IR and Raman spectroscopy in the 1990s and early 2000s. Now, ultra-low-loss fibers with the loss of 0.150dB/km are commercially available in trans-oceanic submarine cable systems.

  • Creation of Temporal Model for Prioritized Transmission in Predictive Spatial-Monitoring Using Machine Learning Open Access

    Keiichiro SATO  Ryoichi SHINKUMA  Takehiro SATO  Eiji OKI  Takanori IWAI  Takeo ONISHI  Takahiro NOBUKIYO  Dai KANETOMO  Kozo SATODA  

     
    PAPER-Network

      Pubricized:
    2021/02/01
      Vol:
    E104-B No:8
      Page(s):
    951-960

    Predictive spatial-monitoring, which predicts spatial information such as road traffic, has attracted much attention in the context of smart cities. Machine learning enables predictive spatial-monitoring by using a large amount of aggregated sensor data. Since the capacity of mobile networks is strictly limited, serious transmission delays occur when loads of communication traffic are heavy. If some of the data used for predictive spatial-monitoring do not arrive on time, prediction accuracy degrades because the prediction has to be done using only the received data, which implies that data for prediction are ‘delay-sensitive’. A utility-based allocation technique has suggested modeling of temporal characteristics of such delay-sensitive data for prioritized transmission. However, no study has addressed temporal model for prioritized transmission in predictive spatial-monitoring. Therefore, this paper proposes a scheme that enables the creation of a temporal model for predictive spatial-monitoring. The scheme is roughly composed of two steps: the first involves creating training data from original time-series data and a machine learning model that can use the data, while the second step involves modeling a temporal model using feature selection in the learning model. Feature selection enables the estimation of the importance of data in terms of how much the data contribute to prediction accuracy from the machine learning model. This paper considers road-traffic prediction as a scenario and shows that the temporal models created with the proposed scheme can handle real spatial datasets. A numerical study demonstrated how our temporal model works effectively in prioritized transmission for predictive spatial-monitoring in terms of prediction accuracy.

  • Correlation of Centralities: A Study through Distinct Graph Robustness

    Xin-Ling GUO  Zhe-Ming LU  Yi-Jia ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/05
      Vol:
    E104-D No:7
      Page(s):
    1054-1057

    Robustness of complex networks is an essential subject for improving their performance when vertices or links are removed due to potential threats. In recent years, significant advancements have been achieved in this field by many researchers. In this paper we show an overview from a novel statistic perspective. We present a brief review about complex networks at first including 2 primary network models, 12 popular attack strategies and the most convincing network robustness metrics. Then, we focus on the correlations of 12 attack strategies with each other, and the difference of the correlations from one network model to the other. We are also curious about the robustness of networks when vertices are removed according to different attack strategies and the difference of robustness from one network model to the other. Our aim is to observe the correlation mechanism of centralities for distinct network models, and compare the network robustness when different centralities are applied as attacking directors to distinct network models. What inspires us is that maybe we can find a paradigm that combines several high-destructive attack strategies to find the optimal strategy based on the deep learning framework.

  • Attention Voting Network with Prior Distance Augmented Loss for 6DoF Pose Estimation

    Yong HE  Ji LI  Xuanhong ZHOU  Zewei CHEN  Xin LIU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/03/26
      Vol:
    E104-D No:7
      Page(s):
    1039-1048

    6DoF pose estimation from a monocular RGB image is a challenging but fundamental task. The methods based on unit direction vector-field representation and Hough voting strategy achieved state-of-the-art performance. Nevertheless, they apply the smooth l1 loss to learn the two elements of the unit vector separately, resulting in which is not taken into account that the prior distance between the pixel and the keypoint. While the positioning error is significantly affected by the prior distance. In this work, we propose a Prior Distance Augmented Loss (PDAL) to exploit the prior distance for more accurate vector-field representation. Furthermore, we propose a lightweight channel-level attention module for adaptive feature fusion. Embedding this Adaptive Fusion Attention Module (AFAM) into the U-Net, we build an Attention Voting Network to further improve the performance of our method. We conduct extensive experiments to demonstrate the effectiveness and performance improvement of our methods on the LINEMOD, OCCLUSION and YCB-Video datasets. Our experiments show that the proposed methods bring significant performance gains and outperform state-of-the-art RGB-based methods without any post-refinement.

  • Graph Laplacian-Based Sequential Smooth Estimator for Three-Dimensional RSS Map

    Takahiro MATSUDA  Fumie ONO  Shinsuke HARA  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    738-748

    In wireless links between ground stations and UAVs (Unmanned Aerial Vehicles), wireless signals may be attenuated by obstructions such as buildings. A three-dimensional RSS (Received Signal Strength) map (3D-RSS map), which represents a set of RSSs at various reception points in a three-dimensional area, is a promising geographical database that can be used to design reliable ground-to-air wireless links. The construction of a 3D-RSS map requires higher computational complexity, especially for a large 3D area. In order to sequentially estimate a 3D-RSS map from partial observations of RSS values in the 3D area, we propose a graph Laplacian-based sequential smooth estimator. In the proposed estimator, the 3D area is divided into voxels, and a UAV observes the RSS values at the voxels along a predetermined path. By considering the voxels as vertices in an undirected graph, a measurement graph is dynamically constructed using vertices from which recent observations were obtained and their neighboring vertices, and the 3D-RSS map is sequentially estimated by performing graph Laplacian regularized least square estimation.

  • Alleviating File System Journaling Problem in Containers for DBMS Consolidation

    Asraa ABDULRAZAK ALI MARDAN  Kenji KONO  

     
    PAPER-Software System

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:7
      Page(s):
    931-940

    Containers offer a lightweight alternative over virtual machines and become a preferable choice for application consolidation in the clouds. However, the sharing of kernel components can violate the I/O performance and isolation in containers. It is widely recognized that file system journaling has terrible performance side effects in containers, especially when consolidating database management systems (DBMSs). The sharing of journaling modules among containers causes performance dependency among them. This dependency violates resource consumption enforced by the resource controller, and degrades I/O performance due to the contention of the journaling module. The operating system developers have been working on novel designs of file systems or new journaling mechanisms to solve the journaling problems. This paper shows that it is possible to overcome journaling problems without re-designing file systems or implementing a new journaling method. A careful configuration of containers in existing file systems can gracefully solve the problems. Our recommended configuration consists of 1) per-container journaling by presenting each container with a virtual block device to have its own journaling module, and 2) accounting journaling I/Os separately for each container. Our experimental results show that our configuration resolves journaling-related problems, improves MySQL performance by 3.4x, and achieves reasonable performance isolation among containers.

  • Low-Power Implementation Techniques for Convolutional Neural Networks Using Precise and Active Skipping Methods Open Access

    Akira KITAYAMA  Goichi ONO  Tadashi KISHIMOTO  Hiroaki ITO  Naohiro KOHMU  

     
    PAPER

      Pubricized:
    2020/12/22
      Vol:
    E104-C No:7
      Page(s):
    330-337

    Reducing power consumption is crucial for edge devices using convolutional neural network (CNN). The zero-skipping approach for CNNs is a processing technique widely known for its relatively low power consumption and high speed. This approach stops multiplication and accumulation (MAC) when the multiplication results of the input data and weight are zero. However, this technique requires large logic circuits with around 5% overhead, and the average rate of MAC stopping is approximately 30%. In this paper, we propose a precise zero-skipping method that uses input data and simple logic circuits to stop multipliers and accumulators precisely. We also propose an active data-skipping method to further reduce power consumption by slightly degrading recognition accuracy. In this method, each multiplier and accumulator are stopped by using small values (e.g., 1, 2) as input. We implemented single shot multi-box detector 500 (SSD500) network model on a Xilinx ZU9 and applied our proposed techniques. We verified that operations were stopped at a rate of 49.1%, recognition accuracy was degraded by 0.29%, power consumption was reduced from 9.2 to 4.4 W (-52.3%), and circuit overhead was reduced from 5.1 to 2.7% (-45.9%). The proposed techniques were determined to be effective for lowering the power consumption of CNN-based edge devices such as FPGA.

  • Energy Efficient Approximate Storing of Image Data for MTJ Based Non-Volatile Flip-Flops and MRAM

    Yoshinori ONO  Kimiyoshi USAMI  

     
    PAPER

      Pubricized:
    2021/01/06
      Vol:
    E104-C No:7
      Page(s):
    338-349

    A non-volatile memory (NVM) employing MTJ has a lot of strong points such as read/write performance, best endurance and operating-voltage compatibility with standard CMOS. However, it consumes a lot of energy when writing the data. This becomes an obstacle when applying to battery-operated mobile devices. To solve this problem, we propose an approach to augment the capability of the precision scaling technique for the write operation in NVM. Precision scaling is an approximate computing technique to reduce the bit width of data (i.e. precision) for energy reduction. When writing image data to NVM with the precision scaling, the write energy and the image quality are changed according to the write time and the target bit range. We propose an energy-efficient approximate storing scheme for non-volatile flip-flops and a magnetic random-access memory (MRAM) that allows us to write the data by optimizing the bit positions to split the data and the write time for each bit range. By using the statistical model, we obtained optimal values for the write time and the targeted bit range under the trade-off between the write energy reduction and image quality degradation. Simulation results have demonstrated that by using these optimal values the write energy can be reduced up to 50% while maintaining the acceptable image quality. We also investigated the relationship between the input images and the output image quality when using this approach in detail. In addition, we evaluated the energy benefits when applying our approach to nine types of image processing including linear filters and edge detectors. Results showed that the write energy is reduced by further 12.5% at the maximum.

  • Multi-Input Functional Encryption with Controlled Decryption

    Nuttapong ATTRAPADUNG  Goichiro HANAOKA  Takato HIRANO  Yutaka KAWAI  Yoshihiro KOSEKI  Jacob C. N. SCHULDT  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/01/12
      Vol:
    E104-A No:7
      Page(s):
    968-978

    In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.

  • Novel Threshold Circuit Technique and Its Performance Analysis on Nanowatt Vibration Sensing Circuits for Millimeter-Sized Wireless Sensor Nodes

    Toshishige SHIMAMURA  Hiroki MORIMURA  

     
    PAPER

      Pubricized:
    2021/01/13
      Vol:
    E104-C No:7
      Page(s):
    272-279

    A new threshold circuit technique is proposed for a vibration sensing circuit that operates at a nanowatt power level. The sensing circuits that use sample-and-hold require a clock signal, and they consume power to generate a signal. In the use of a Schmitt trigger circuit that does not use a clock signal, a sink current flows when thresholding the analog signal output. The requirements for millimeter-sized wireless sensor nodes are an average power on the order of a nanowatt and a signal transition time of less than 1 ms. To meet these requirements, our circuit limits the sink current with a nanoampere-level current source. The chattering caused by current limiting is suppressed by feeding back the change in output voltage to the limiting current. The increase in the signal transition time that is caused by current limiting is reduced by accelerating the discharge of the load capacitance. For a test chip fabricated in the 0.35-µm CMOS process, the proposed threshold circuits operate without chattering and the average powers are 0.7-3 nW. The signal transition times are estimated in a circuit simulation to be 65-97 µs. The proposed circuit has 1/150th the power-delay product with no time interval of the sensing operation under the condition that the time interval is 1s. These results indicate that, the proposed threshold circuits are suitable for vibration sensing in millimeter-sized wireless sensor nodes.

  • Parameters Estimation of Impulse Noise for Channel Coded Systems over Fading Channels

    Chun-Yin CHEN  Mao-Ching CHIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    903-912

    In this paper, we propose a robust parameters estimation algorithm for channel coded systems based on the low-density parity-check (LDPC) code over fading channels with impulse noise. The estimated parameters are then used to generate bit log-likelihood ratios (LLRs) for a soft-inputLDPC decoder. The expectation-maximization (EM) algorithm is used to estimate the parameters, including the channel gain and the parameters of the Bernoulli-Gaussian (B-G) impulse noise model. The parameters can be estimated accurately and the average number of iterations of the proposed algorithm is acceptable. Simulation results show that over a wide range of impulse noise power, the proposed algorithm approaches the optimal performance under different Rician channel factors and even under Middleton class-A (M-CA) impulse noise models.

  • Room Temperature Atomic Layer Deposition of Nano Crystalline ZnO and Its Application for Flexible Electronics

    Kazuki YOSHIDA  Kentaro SAITO  Keito SOGAI  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER-Electronic Materials

      Pubricized:
    2020/11/26
      Vol:
    E104-C No:7
      Page(s):
    363-369

    Nano crystalline zinc oxide (ZnO) is deposited by room temperature atomic layer deposition (RT-ALD) using dimethylzinc and a plasma excited humidified Ar without thermal treatments. The TEM observation indicated that the deposited ZnO films were crystallized with grain sizes of ∼20 nm on Si in the course of the RT-ALD process. The crystalline ZnO exhibited semiconducting characteristics in a thin film transistor, where the field-effect mobility was recorded at 1.29×10-3cm2/V·s. It is confirmed that the RT deposited ZnO film has an anticorrosion to hot water. The water vapor transmission rate of 8.4×10-3g·m-2·day-1 was measured from a 20 nm thick ZnO capped 40 nm thick Al2O3 on a polyethylene naphthalate film. In this paper, we discuss the crystallization of ZnO in the RT ALD process and its applicability to flexible electronics.

1221-1240hit(20498hit)