The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

17841-17860hit(20498hit)

  • Nonhomogeneous Decentralized Supervisory Control of Discrete Event Dynamic Systems

    Kwang-Hyun CHO  Jong-Tae LIM  

     
    LETTER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:5
      Page(s):
    605-607

    The supervisory control theory of discrete event dynamic systems was proposed in the framework of automata and formal languages. The concept of decentralized supervisory control was developed for the local supervisor Si whose concurrent operation results in the closed-loop language L (Si/G) equal to that of global supervisor, L (S/G). In this letter we extend this concept by considering the problem of optinal combination of decentralized with centralized control in case pure decentralized control happens to be inadequate. We introduce the concept of locally controllable complementary tuple and present an analytical framework for nonhomogeneous decentralized supervisory control systems.

  • A Synergetic Neural Network with Crosscorrelation Dynamics

    Masahiro NAKAGAWA  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    881-893

    In this study we shall put forward a bidirectional synergetic neural network and investigate the crossassociation dynamics in an order parameter space. The present model is substantially based on a top-down formulation of the dynamic rule of an analog neural network in the analogy with the conventional bidirectional associative memory. It is proved that a complete association can be assured up to the same number of the embedded patterns as the number of neurons. In addition, a searching process of a couple of embedded patterns can be also realised by means of controlling attraction parameters as seen in the autoassociative synergetic models.

  • Detection and Processing of Lightning-Sourced Magnetotelluric Transients with the Wavelet Transform

    Yuanchou ZHANG  David GOLDAK  Ken PAULSON  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:5
      Page(s):
    849-858

    In audio-frequency magnetotelluric surveys, electromagnetic radiation from worldwide thunderstorm activity is used as an energy source for geophysical exploration. Owing to its origin, such a signal is inherently transient and short lived. Therefore, special care should be taken in the detection and processing of this transient signal because the interval of time between two successive transient events contains almost no information as far as the audio frequency magnetotellurist is concerned. In this paper, a wavelet transform detection, processing and analysis technique is developed. A complex-compactly-supported wavelet, known as the Morlet wavelet, is selected as the mother wavelet. With the Morlet wavelet, lightning transients can be easily identified in the noisy recordings and the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. This scheme has been tested on real data collected in the archipelago of Svalbard, Norway as well as on five sets of synthetic data contaminated with various kinds of noise. The results show the superior performance of the wavelet transform transient detection and analysis technique.

  • Parallel Universal Simulation and Self-Reproduction in Cellular Spaces

    Katsuhiko NAKAMURA  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:5
      Page(s):
    547-552

    This paper describes cellular spaces (or cellular automata) with capabilities of parallel self-reproduction and of parallel universal simulation of other cellular spaces. It is shown that there is a 1-dimensional cellular space U, called a parallel universal simulator, that can simulate any given 1-dimensional cellular space S in the sense that if an initial configuration of U has a coded information of both the local function and an initial configuration of S, then U has the same computation result that S has and the computation time of U is proportional to that of S. Two models of nontrivial parallel self-reproduction are also shown. One model is based on "state-exchange" method, and the other is based on a fixed point program of the parallel universal simulator.

  • Syntactic Unification Problems under Constrained Substitutions

    Kazuhiro TAKADA  Yuichi KAJI  Tadao KASAMI  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E80-D No:5
      Page(s):
    553-561

    Some kind of practical problems such as security verification of cryptographic protocols can be described as a problem to accomplish a given purpose by using limited operations and limited materials only. To model such problems in a natural way, unification problems under constrained substitutions have been proposed. This paper is a collection of results on the decidability and the computational complexity of a syntactic unification problem under constrained substitutions. A number of decidable, undecidable, tractable and intractable results of the problem are presented. Since a unification problem under constrained substitutions can be regarded as an order-sorted unification problem with term declarations such that the number of sorts is only one, the results presented in this paper also indicate how the intractability of order-sorted unification problems is reduced by restecting the number of sorts to one.

  • Coupling Coefficients and Random Geometrical Imperfections of an Image Fiber

    Akira KOMIYAMA  

     
    LETTER-Opto-Electronics

      Vol:
    E80-C No:5
      Page(s):
    717-719

    Random fluctuations of the propagation constants of modes along the fiber axis are taken into consideration and the power coupling coefficient between cores of an image fiber is theoretically derived. For the fiber used for the measurement in the previous paper (A. Komiyama, IEICE, vol.E79-C, no.2, pp.243-248, 1996) it is verified that the coupling coefficient can be described in terms of statistical properties of the propagation constants in the cross-section of the fiber.

  • Text-Independent Speaker Identification Utilizing Likelihood Normalization Technique

    Konstantin P. MARKOV  Seiichi NAKAGAWA  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E80-D No:5
      Page(s):
    585-593

    In this paper we describe a method, which allows the likelihood normalization technique, widely used for speaker verification, to be implemented in a text-independent speaker identification system. The essence of this method is to apply likelihood normalization at frame level instead of, as it is usually done, at utterance level. Every frame of the test utterance is inputed to all the reference models in parallel. In this procedure, for each frame, likelihoods from all the models are available, hence they can be normalized at every frame. A special kind of likelihood normalization, called Weighting Models Rank, is also experimented. We have implemented these techniques in speaker identification system based on VQ-distortion codebooks or Gaussian Mixture Models. Evaluation results showed that the frame level likelihood normalization technique gives higher speaker identification rates than the standard accumulated likelihood approach.

  • Performance Analysis of Approximate ML Detection of MPSK Signals Transmitted over AWGN Channels

    Fumiyuki ADACHI  

     
    PAPER-Communication Theory

      Vol:
    E80-B No:5
      Page(s):
    726-735

    Approximate maximum likelihood (ML) detection implemented by a reduced state Viterbi algorithm (VA), called the reduced state Viterbi coherent detection (RSVCD) algorithm in this paper, is described for the reception of uncoded M-ary PSK (MPSK) signals transmitted over additive white Gaussian noise (AWGN) channels. An M-state trellis, each state representing one of M signal constellation points, is used. The RSVCD algorithm performs parallel channel estimation based on the per-survivor processing principle (PSPP). Simple decision feedback CD (DFCD) is deduced as a special case of RSVCD. Unified BER expressions are derived for RSVCD, DFCD, and approximate ML detection implemented as an ML-state Viterbi algorithm (referred to as VACD) [6] as well as ideal CD and differential detection (DD). Computer simulation results are also presented and compared with theoretical results.

  • Wavelength Division Multi/Demultiplexer with Arrayed Waveguide Grating

    Hisato UETSUKA  Kenji AKIBA  Kenichi MOROSAWA  Hiroaki OKANO  Satoshi TAKASUGI  Kimio INABA  

     
    PAPER

      Vol:
    E80-C No:5
      Page(s):
    619-624

    Recently, a wavelength division multi/demultiplexing system has been viewed with keen interest because it is possible to increase the transmission capacity and system flexibility. An arrayed waveguide grating (AWG) type of Multi/demultiplexer which is one of the key components to realize such a system has been developed by using Planar Lightwave Circuits (PLCs). Newly designed optical circuits have been incorporated into the AWG to control the center wavelength and to expand the pass band width. The 3 dB pass band width is 1.4 times that of a conventional AWG. It is confirmed that the newly developed AWG has low polarization dependence, low temperature dependence and high reliability.

  • Non-Preemptive Scheduling of Real-Time Periodic Tasks with Specified Release Times

    Ara KHIL  Seungryoul MAENG  Jung Wan CHO  

     
    PAPER-Sofware System

      Vol:
    E80-D No:5
      Page(s):
    562-572

    The problem of non-preemptive scheduling of real-time periodic tasks with specified release times on a uniprocessor system is known as NP-hard problem. In this paper we propose a new non-preemptive scheduling algorithm and a new static scheduling strategy which use the repetitiveness and the predictability of periodic tasks in order to improve schedulabilities of real-time periodic tasks with specified release times. The proposed scheduling algorithm schedules periodic tasks by using the heuristic that precalculates if the scheduling of the selected task leads to the case that a task misses a deadline when tasks are scheduled by the non-preemptive EDF algorithm. If so, it defers the scheduling of the selected task to avoid the precalculated deadline-missing. Otherwise, it schedules the selected task in the same way as the non-preemptive EDF algorithm. Our scheduling algorithm can always find a feasible schedule for the set of periodic tasks with specified release times which is schedulable by the non-preemptive EDF algorithm. Our static sheduling strategy transforms the problem of non-preemptive scheduling for periodic tasks with specified release times into one with same release times for all tasks. It suggests dividing the given problem into two subproblems, making a non-preemptive scheduling algorithm to find two feasible subschedules for the two subproblems in the forward or backward scheduling within specific time intervals, and then combining the two feasible subschedules into a complete feasible schedule for the given problem. We present the release times as a function of periods for the efficient problem division. Finally, we show improvements of schedulabilities of our scheduling algorithm and scheduling strategy by simulation results.

  • Isolator-Free DFB-LD Module with TEC Control Using Silicon Waferboard

    Koji TERADA  Seimi SASAKI  Kazuhiro TANAKA  Tsuyoshi YAMAMOTO  Tadashi IKEUCHI  Kazunori MIURA  Mitsuhiro YANO  

     
    LETTER-Optoelectronic Packaging

      Vol:
    E80-C No:5
      Page(s):
    703-706

    This letter describes our DFB-LD module for use in WDM optical access networks. We realized an isolator-free DFB-LD module with a thermo-electric cooler in aim of stabilizing the emission wavelength for WDM systems. Silicon waferboard technology was employed to achieve simple assembly and small size of the module. This small size contributed to low TEC power. Our fabricated module demonstrated low-noise and stable emission wavelength characteristics under 156 Mbit/s pseudo random modulation.

  • Modeling of Microwave Oven Interference Using Class-A Impulsive Noise and Optimum Reception

    Hideki KANEMOTO  Shinichi MIYAMOTO  Norihiko MORINAGA  

     
    PAPER

      Vol:
    E80-B No:5
      Page(s):
    670-677

    Microwave oven interference much degrades the performance of digital radio communication systems, and, in order to obtain a good error performance under microwave oven interference environment, the digital radio communication systems should be newly designed for microwave oven interference environment. In this paper, using the Middleton's canonical class-A impulsive noise model, we propose a statistical model of microwave oven interference and discuss the performance improvement achieved by an optimum reception based on this statistical model. As the results, although the first order statistic of microwave oven interference can be modeled by class-A impulsive noise, because of the burst high level interference, the performance of optimum receiver designed for class-A noise cannot achieve a good error performance under microwave oven interference environment. In order to eliminate the effect of burst high level interference, we introduce sample interleave scheme and show that the performance of optimum receiver can be much improved by using sample interleave scheme.

  • Automotive Radio Noise in Lower Frequency Microwave Bands (1-3 GHz) Measured in a Van Running in an Urban Area

    Yukio YAMANAKA  Akira SUGIURA  

     
    PAPER

      Vol:
    E80-B No:5
      Page(s):
    663-669

    Noise waveform analyzer was developed to measure the statistical distributions such as amplitude probability distributions of noise envelope. Using this system installed in a van, some statistical distributions of automotive radio noise in lower frequency microwave bands (1-3 GHz), received while driving on main streets and expressways in Tokyo, were measured to provide fundamental data for designing mobile communication systems in this frequency band. Variation of the impulse height, received in typical driving conditions, can be expressed by a log-normal distribution and impulse emission seems to be Poisson-distributed in time for time history records as long as 40 minutes.

  • Dosimetric Evaluation of Handheld Mobile Communications Equipment with Known Precision

    Niels KUSTER  Ralph KASTLE  Thomas SCHMID  

     
    INVITED PAPER

      Vol:
    E80-B No:5
      Page(s):
    645-652

    Recently several dosimetric assessment procedures have been proposed to demonstrate the compliance of handheld mobile telecommuications equipment (MTE) with safety limits. However, for none of these procedures has an estimation of the overall uncertainty in assessing the maximum exposure been provided for a reasonable cross-section of potential users. This paper presents a setup and procedure based on a high-precision dosimetric scanner combined with a new phantom derived from an anatomical study. This allows the assessment of the maximum spatial peak SAR values occurring in approximately 90% of all MTE users, including children, with a precision of better than 25%. This setup and procedure therefore satisfies the requirements of the FCC, as well as those drafted by a CENELEC working group mandated by the European Union.

  • An Improved Bound for the Dimension of Subfield Subcodes

    Tomoharu SHIBUYA  Ryutaroh MATSUMOTO  Kohichi SAKANIWA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E80-A No:5
      Page(s):
    876-880

    In this paper, we give a new lower bound for the dimension of subfield subcodes. This bound improves the lower bound given by Stichtenoth. A BCH code and a subfield subcode of algebraic geometric code on a hyper elliptic curve are discussed as special cases.

  • State Fence DiagramsA Visual Formalism to Analyze Discrete-Event Systems

    Hiromi KOBAYASHI  Yasunari SHIDAMA  

     
    LETTER-Concurrent Systems

      Vol:
    E80-A No:5
      Page(s):
    924-927

    The usage of a diagram, which we call a state fence diagram (SFD), for analyzing discrete event systems such as reactive systems, is presented. This diagram is useful for event concurrent response and scenario analysis by using its three description styles.

  • Surface Defect Inspection of Cold Rolled Strips with Features Based on Adaptive Wavelet Packets

    Chang Su LEE  Chong-Ho CHOI  Young CHOI  Se Ho CHOI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:5
      Page(s):
    594-604

    The defects in the cold rolled strips have textural characteristics, which are nonuniform due to its irregularities and deformities in geometrical appearance. In order to handle the textural characteristics of images with defects, this paper proposes a surface inspection method based on textural feature extraction using the wavelet transform. The wavelet transform is employed to extract local features from textural images with defects both in the frequency and in the spatial domain. To extract features effectively, an adaptive wavelet packet scheme is developed, in which the optimum number of features are produced automatically through subband coding gain. The energies for all subbands of the optimal quadtree of the adaptive wavelet packet algorithm and four entropy features in the level one LL subband, which correspond to the local features in the spatial domain, are extracted. A neural network is used to classify the defects of these features. Experiments with real image data show good training and generalization performances of the proposed method.

  • High Speed Monolithically Integrated p-i-n/HBT Photoreceivers

    Kao-Chih SYAO  Augusto L. Gutierrez-AITKEN  Kyounghoon YANG  Xiangkun ZHANG  George I. HADDAD  Pallab K. BHATTACHARYA  

     
    PAPER-Optoelectronic Integrated Receivers

      Vol:
    E80-C No:5
      Page(s):
    695-702

    The characteristics of high-performance InP-based monolithically integrated single and multiple channel photoreceivers with an InGaAs p-i-n photodiode and InAlAs/InGaAs HBTs, realized by one-step molecular beam epitaxy, are described. The monolithically integrated photoreceiver includes an integrated spiral inductor following the p-i-n diode at the input of the transimpedance amplifier to enhance the circuit response at high frequencies. Crosstalk of the multi-channel photoreceiver arrays is greatly reduced by applying both a metal ground shield and dual bias. The maximum measured -3 dB bandwidth of a single-channel integrated p-i-n/HBT photoreceiver is 19.5 GHz and the minimum crosstalk of the photoreceiver arrays, with an individual channel bandwidth of 11.5 GHz, is 36 dB. At these performance levels, these OEICs represent the state-of-the-art in multichannel integrated photoreceiver arrays.

  • Balanced State Feedback Controllers for Descrete Event Systems Described by the Golaszewski-Ramadge Model

    Shigemasa TAKAI  Toshimitsu USHIO  Shinzo KODAMA  

     
    LETTER-Concurrent Systems

      Vol:
    E80-A No:5
      Page(s):
    928-931

    We study state feedback control of discrete event systems described by the Golaszewski-Ramadge model. We derive a necessary and sufficient condition for the existence of a balanced state feedback controller under partial observations.

  • Inverse Filter of Sound Reproduction Systems Using Regularization

    Hironori TOKUNO  Ole KIRKEBY  Philip A. NELSON  Hareo HAMADA  

     
    PAPER

      Vol:
    E80-A No:5
      Page(s):
    809-820

    We present a very fast method for calculating an inverse filter for audio reproduction system. The proposed method of FFT-based inverse filter design, which combines the well-known principles of least squares optimization and regularization, can be used for inverting systems comprising any number of inputs and outputs. The method was developed for the purpose of designing digital filters for multi-channel sound reproduction. It is typically several hundred times faster than a conventional steepest descent algorithm implemented in the time domain. A matrix of causal inverse FIR (finite impulse response) filters is calculated by optimizing the performance of the filters at a large number of discrete frequencies. Consequently, this deconvolution method is useful only when it is feasible in practice to use relatively long inverse filters. The circular convolution effect in the time domain is controlled by zeroth-order regularization of the inversion problem. It is necessary to set the regularization parameter β to an appropriate value, but the exact value of β is usually not critical. For single-channel systems, a reliable numerical method for determining β without the need for subjective assessment is given. The deconvolution method is based on the analysis of a matrix of exact least squares inverse filters. The positions of the poles of those filters are shown to be particularly important.

17841-17860hit(20498hit)