The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

17861-17880hit(20498hit)

  • A Novel Linearized Transconductor Using a Differential Current Amplifier

    Fujihiko MATSUMOTO  

     
    LETTER-Analog Signal Processing

      Vol:
    E80-A No:5
      Page(s):
    916-919

    A new linearization technique of a transconductor is presented. The linearization is realized by using a differential current amplifier with an emitter-coupled pair. A specific value of the linearization parameter gives a maximally flat or an equiripple characteristic. Deviations from the theoretical characteristic can be adjusted by tuning the tail current of the emitter-coupled pair. The proposed technique is demonstrated by PSPICE simulation.

  • 1616 Two-Dimensional Optoelectronic Integrated Receiver Array for Highly Parallel Interprocessor Networks

    Hiroshi YANO  Sosaku SAWADA  Kentaro DOGUCHI  Takashi KATO  Goro SASAKI  

     
    PAPER-Optoelectronic Integrated Receivers

      Vol:
    E80-C No:5
      Page(s):
    689-694

    A two-dimensional receiver OEIC array having an address selector for highly parallel interprocessor networks has been realized. The receiver OEIC array consists of two-dimensionally arranged 1616 (256) optical receiver cells with switching transistors, address selectors (decoders), and a comparator. Each optical receiver comprises a pin PD and a transimpedance-type HBT amplifier. The HBT has an InP passivation structure to suppress the emitter-size effect, which results in the improvement of current gains, especially at low collector current densities. The receiver OEIC array was fabricated on a 3-inch diameter InP substrate with pin/HBT integration technology. Due to the function of address selection, only one cell is activated and the other cells are mute, so the receiver OEIC array shows low crosstalk and low power consumption characteristics. The array also shows a 266-Mb/s data transmission capability. This receiver OEIC array is a most complex InP-based OEIC ever reported. The realization of the two-dimensional receiver OEIC array promises the future interprocessor networks with highly parallel optical interconnections.

  • Pre-Connectorized High Density Optical Fiber Cable Technology

    Hideyuki IWATA  Shigeru TOMITA  Shinji NAGASAWA  Tadatoshi TANIFUJI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    540-550

    High density and small diameter optical fiber cables are required in order to construct "Fiber To The Home (FTTH)" to support multi media services economically. By reducing the cable diameter and weight, it will be possible to install longer lengths of cable and use conduits more effectively. Moreover, the development of low loss multifiber connectors and joint boxes will reduce the joining time. It is expected that the achievement of the above will lead to reductions in installation and joining costs. This paper describes the design and performance of 1000-fiber single slotted core cable. Its diameter is 30 mm compared to 40 mm for currently used multi slotted core cable, and its weight is 0.85 kg/m compared to 1.4 kg/m. The reduced cable outer diameter and weight allow us to increase both the installed length from 1 to 2 km (pre-connectorized) and the maximum fiber count from 1000 to 1600 for multiple installation in a conduit. We also describe low loss 4, and 8 mechanically transferable (MT) connectors, a pulling head and a joint box. The average connection loss of those connectors is reduced from 0.35 to 0.2 dB. The cable joining time was greatly reduced from 9 to 4.5 hours by using 5 stacks of multi fiber connectors and newly developed pulling heads and a joint boxes. Finally, we describe field test results for 1000-fiber pre-connectorized cable. In field tests, this preconnectorized cable is sufficiently stable with present installation methods. These results will lead to reductions in installation and joining costs. The 1000-fiber pre-connectorized single slotted core cable is promising with regard to upgrading the access network towards FTTH.

  • Fast Failure Restoration Algorithm with Reduced Messages Based on Flooding Mechanism

    Komwut WIPUSITWARAKUN  Hideki TODE  Hiromasa IKEDA  

     
    PAPER-Communication Networks and Services

      Vol:
    E80-B No:4
      Page(s):
    564-572

    A highly reliable network which can restore itself from network failures is one important concept for the future high capacity broadband network. In such self-healing network, flooding based failure-restoration algorithm is used to locate new routes and then to reroute failure traffic to that routes automatically when network failures such as link or node failures occur. Since the speed of this algorithm is degraded by the large amount of restoration messages produced by the process, such large volume messages should be reduced. In this paper, the scheme will be proposed, which reduces the large volume messages and efficiently selects alternative routes. In this scheme, the Message Wall will be used to filter useless restoration messages at the tandem nodes and Multi-Message Selecting method will be used to rapidly select a group of link-disjointed alternative routes from the feasible ones in each Flooding Wave sequence. The simulation results show that restoration messages are dramatically reduced and adequate alternative routes can be quickly found out.

  • Low Rayleigh Scattering Silicate Glasses for Optical Fibers

    Shigeki SAKAGUCHI  Shin-ichi TODOROKI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    508-515

    We propose low Rayleigh scattering Na2O-MgO-SiO2 (NMS) glass as a candidate material for low-loss optical fibers. This glass exhibits Rayleigh scattering which is only 0.4 times that of silica glass, and a theoretical evaluation suggests that it is dominated by density fluctuation. An investigation of the optical properties of NMS glass reveals that a minimum loss of 0.06 dB/km is expected at a wavelength of 1.6 µm and that the zero-material dispersion wavelength is found in the 1.5 µm band. To establish the waveguide structure, we evaluated the feasibility of using F-doped NMS (NMS-F) glass as a cladding layer for an NMS core and found that it is suitable because it exhibits low relative scattering (e.g. 0.7) and is versatile in terms of viscosity matching. We also describe an attempt to draw optical fibers using the double crucible technique.

  • Factoring Hard Integers on a Parallel Machine

    Rene PERALTA  Masahiro MAMBO  Eiji OKAMOTO  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    658-662

    We describe our implementation of the Hypercube variation of the Multiple Polynomial Quadratic Sieve (HMPQS) integer factorization algorithm on a Parsytec GC computer with 128 processors. HMPQS is a variation on the Quadratic Sieve (QS) algorithm which inspects many quadratic polynomials looking for quadratic residues with small prime factors. The polynomials are organized as the nodes of an n-dimensional cube. We report on the performance of our implementations on factoring several large numbers for the Cunningham Project.

  • Beam Forming Characteristics of a Waveguide-Type Optical Phased Array Antenna

    Yasushi MURAKAMI  Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:4
      Page(s):
    617-624

    This paper presents the beam forming characteristics of an optical waveguide-type phased array antenna. Four linearly arranged array antenna was monolithically fabricated on one LiNbO3 substrate containing variable power dividers (VPDs) and optical phase shifters (OPSs). The amplitude and the phase of each antenna element was controlled by applying DC voltage on each VPD and OPS. Open ends of Ti-indiffused waveguides were used as antenna elements. This antenna was designed to operate at 1.3 µm wavelength band. Experimental results confirm the good beam forming capability of optical phased array antennas.

  • Parallelized Simulation of Complicated Polymer Structures and lts Efficiency

    Kazuhito SHIDA  Kaoru OHNO  Masayuki KIMURA  Yoshiyuki KAWAZOE  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    531-537

    A large scale simulation for polymer chains in good solvent is performed. The implementation technique for efficient parallel execution, optimization, and load-balancing are discussed on this practical application. Finally, a simple performance model is proposed.

  • 3-Dimensional Beam Propagation Analysis of Nonlinear Optical Fibers

    Akira NIIYAMA  Masanori KOSHIBA  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    522-527

    A 3-dimensional beam propagation method is described for the analysis of nonlinear optical fibers, where the finite element and finite difference methods are, respectively, utilized for discretizing the fiber cross section and the propagation direction. For efficient evaluation of wide-angle beam propagation, Pade approximation is applied to the differential operator along the propagation direction. In order to improve accuracy of solutions, isoparametric elements and numerical integration formulae derived by Hammer et al. are introduced. The propagation characteristics of nonlinear optical fibers with linear core and nonlinear cladding are analyzed, and unique features of nonlinear guided-wave propagation, such as spatial soliton emission, are investigated.

  • Modular Array Structures for Design and Multiplierless Realization of Two-Dimensional Linear Phase FIR Digital Filters

    Saed SAMADI  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    722-736

    It is shown that two-dimensional linear phase FIR digital filters with various shapes of frequency response can be designed and realized as modular array structures free of multiplier coefficients. The design can be performed by judicious selection of two low order linear phase transfer functions to be used at each module as kernel filters. Regular interconnection of the modules in L rows and K columns conditioned with boundary coefficients 1, 0 and 1/2 results in higher order digital filters. The kernels should be chosen appropriately to, first, generate the desired shape of frequency response characteristic and, second, lend themselves to multiplierless realization. When these two requirements are satisfied, the frequency response can be refined to possess narrower transition bands by adding additional rows and columns. General properties of the frequency response of the array are investigated resulting in Theorems that serve as valuable tools towards appropriate selection of the kernels. Several design examples are given. The array structures enjoy several favorable features. Specifically, regularity and lack of multiplier coefficients makes it suitable for high-speed systolic VLSI implementation. Computational complexity of the structure is also studied.

  • Parallel File Access for Implementing Dynamic Load Balancing on a Massively Parallel Computer

    Masahisa SHIMIZU  Yasuhiro OUE  Kazumasa OHNISHI  Toru KITAMURA  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    466-472

    Because a massively parallel computer processes vast amounts of data and generates many access requests from multiple processors simultaneously, parallel secondary storage requires large capacity and high concurrency. One effective method of implementation of such secondary storage is to use disk arrays which have multiple disks connected in parallel. In this paper, we propose a parallel file access method named DECODE (dynamic express changing of data entry) in which load balancing of each disk is achieved by dynamic determination of the write data position. For resolution of the problem of data fragmentation which is caused by the relocation of data during a write process, the concept of "Equivalent Area" is introduced. We have performed a preliminary performance evaluation using software simulation under various access statuses by changing the access pattern, access size and stripe size and confirmed the effectiveness of load balancing with this method.

  • High-Performance Parallel Computation of Flows Past a Space Plane Using NWT

    Kisa MATSUSHIMA  Susumu TAKANASHI  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    524-530

    Compressible viscous flows past a space plane have been elucidated by parallel computation on the NWT. The NWT is a vector-parallel architecture computer system which achieves remarkably high performance in processing speed and memory storage. We have examined the advantages of the NWT in order to simulate realistic flow problems in engineering, such as the investigation of global and local aerodynamic characteristics of a space plane. The accuracy of the computational results has been verified by comparison with experimental data. The simplified domain-decomposition technique introduced here is easy to apply for parallel implementation to significantly improve the acceleration rate of computations. The larger available memory storage enables us to conduct a grid refinement study through which several points concerning CFD simulation of a space plane are obtained.

  • Radio-Frequency Silicon LSI's for Personal Communications

    Masayuki ISHIKAWA  Tsuneo TSUKAHARA  

     
    INVITED PAPER-Analog LSI

      Vol:
    E80-C No:4
      Page(s):
    515-524

    RF integration, until recently the integration of active devices in conventional architectures suitable for discrete-component circuits, is now turning into full-integration based on new architectures developed specifically for an LSI technology. This paper reviews some of the key existing and emerging circuit techniques and discusses the serious problem of crosstalk. In order to develop miniature and low power RF transceivers, direct-conversion and monolithic VCO's will be further studied. Silicon bipolar technology will still be playing major role beyond the year 2,000, and CMOS will also be used in certain applications.

  • Formulas on Orthogonal Functionals of Stochastic Binary Sequence

    Junichi NAKAYAMA  Lan GAO  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:4
      Page(s):
    782-785

    This paper deals with an orthogonal functional expansion of a non-linear stochastic functional of a stationary binary sequence taking 1 with equal probability. Several mathematical formulas, such as multi-variate orthogonal polynomials, recurrence formula and generating function, are given in explicit form. A simple example of orthogonal functional expansion and stationary random seqence generated by the stationary binary sequence are discussed.

  • Recent Development of Fiber-Optic Technology

    Yoichi FUJII  

     
    INVITED PAPER

      Vol:
    E80-B No:4
      Page(s):
    504-507

    A brief overview is done to the development of the fiber-optic technology. These recent topics, not the commonly established techniques, are described connecting with the developments of the basic concepts and the expected applications. Some of these newly introduced ideas will become the seeds for the future development of the fiber-optic technology. These seeds include the very deep understanding of the fiber material, new concepts for the fiber characteristics, the brandnew fiber-optic devices and the fiber-optic systems and the applications.

  • Reproducing the Behavior of a Parallel Program by Using Dataflow Execution Models

    Naohisa TAKAHASHI  Takeshi MIEI  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    495-503

    We present a general framework with which we can evaluate the flexibility and efficiency of various replay systems for parallel programs. In our approach, program monitoring is modeled by making a virtual dataflow program graph, referred to as a VDG, that includes all the instructions executed by the program. The behavior of the program replay is modeled on the parallel interpretation of a VDG based on two basic parallel execution models for dataflow program graphs: a data-driven model and a demand-driven model. Previous attempts to replay parallel programs, known as Instant Replay and P-Sequence, are also modeled as variations of the data-driven replay, i.e. the datadriven interpretation of a VDG. We show that the demand-driven replay, i.e. the demand-driven interpretation of a VDG, is more flexible in program replay than the data-driven replay since it allows better control of parallelism and a more selective replay. We also show that we can implement a demand-driven replay that requires almost the same amount of data to be saved during program monitoring as does the data-driven replay, and which eliminates any centralized bottleneck during program monitoring by optimizing the demand propagation and using an effective data structure.

  • Polynomials Approximating Complex Functions

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E80-A No:4
      Page(s):
    778-781

    We frequently use a polynomial to approximate a complex function. This study shows a method which determines the optimum coefficients and the number of terms of the polynomial, and the error of the polynomial is estimated.

  • A Novel Chirped Fiber Bragg Grating Utilizing Thermal Diffusion of Core Dopant

    Satoshi OKUDE  Tetsuya SAKAI  Masaaki SUDOH  Akira WADA  Ryozo YAMAUCHI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    551-556

    A novel technique is proposed to fabricate a chirped fiber Bragg grating utilizing thermal diffusion of core dopant. The chirped grating is written with a uniform period by using UV exposure technique in the fiber whose effective index of the guided mode varies along its length. Thermal diffusion of the core dopant it employed to realize this change of the effective index. Through the thermal diffusion process, the effective index of the fiber decreases from its initial value. When the grating is written in the diffused core region, its reflection wavelength becomes shorter than that in the non-diffused region. The continuous change of effective index is required for making a chirped grating. The fiber is heated by a non-uniform heat source. When the uniform grating is written in this region, the reflection wavelength smoothly changes along the fiber length although the grating period is constant. By optimizing the fiber parameters to realize a highly chirped grating, we have obtained a typical one whose bandwidth is 14.1 nm at half maximum and maximum rejection in transmission is 29 dB. Additionally, the proposed method has an advantage to control the chirp profile with high mechanical reliability.

  • A Comparative Study on Multiple Registration Schemes in Cellular Mobile Radio Systems Considering Mobile Power Status

    Kwang-Sik KIM  Kyoung-Rok CHO  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:4
      Page(s):
    589-597

    The multiple registration schemes (MRSs) proposed here are classified into 3 cases by combining five registration schemes which are power up registration scheme (PURS), power down registration scheme (PDRS), zone based registration scheme (ZBRS), distance based registration scheme (DBRS), and implicit registration scheme (IRS) as follows: the first is MRS1 which covers PURS, PDRS, and ZBRS; the second is MRS2 which covers PURS, PDRS, and DBRS; the third is MRS3 which covers PURS, PDRS, IRS, and DBRS. The three proposed schemes are compared each other by analyzing their combined signaling traffic of paging and registration with considering various parameters of a mobile station behavior (unencumbered call duration, power up and down rate, velocity, etc.). Also, we derive allowable location areas from which the optimal location area is obtained. Numerical results show that MRS3 yields better performance than ZBRS, DBRS, MRS1, and MRS2 in most cases of a mobile station behavior, and it has an advantage of distributing the load of signaling traffic into every cell, which is important in personal communication system.

  • Performance Analysis of Mobile Cellular Radio Systems with Two-Level Priority Reservation Handoff Procedure

    Qing-An ZENG  Kaiji MUKUMOTO  Akira FUKUDA  

     
    PAPER-Mobile Communication

      Vol:
    E80-B No:4
      Page(s):
    598-607

    In this paper, we propose a handoff scheme with two-level priority for the reservation of handoff request calls in mobile cellular radio systems. We assume two types of mobile subscribers with different distributions of moving speed, that is, users with low average moving speed (e.g., pedestrians) and high average moving speed (e.g., people in moving cars). A fixed number of channels in each cell are reserved exclusively for handoff request calls. Out of these number of channels, some are reserved exclusively for the high speed handoff request calls. The remaining channels are shared by both the originating and handoff request calls. In the proposed scheme, both kinds of handoff request calls make their own queues. The system is modeled by a three-dimensional Markov chain. We apply the Successive Over-Relaxation (SOR) method to obtain the equilibrium state probabilities. Blocking probabilities of calls, forced termination probabilities and average queue length of handoff calls of each type are evaluated. We can make the forced termination probabilities of handoff request calls smaller than the blocking probability of originating calls. Moreover, we can make the forced termination probability of high speed handoff request calls smaller than that of the low speed ones. Necessary queue size for the two kinds of handoff request calls are also estimated.

17861-17880hit(20498hit)