The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

17881-17900hit(20498hit)

  • Polynomials Approximating Complex Functions

    Masao KODAMA  Kengo TAIRA  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E80-A No:4
      Page(s):
    778-781

    We frequently use a polynomial to approximate a complex function. This study shows a method which determines the optimum coefficients and the number of terms of the polynomial, and the error of the polynomial is estimated.

  • Design of Array Processors for 2-D Discrete Fourier Transform

    Shietung PENG  Igor SEDUKHIN  Stanislav SEDUKHIN  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    455-465

    In this paper the design of systolic array processors for computing 2-dimensional Discrete Fourier Transform (2-D DFT) is considered. We investigated three different computational schemes for designing systolic array processors using systematic approach. The systematic approach guarantees to find optimal systolic array processors from a large solution space in terms of the number of processing elements and I/O channels, the processing time, topology, pipeline period, etc. The optimal systolic array processors are scalable, modular and suitable for VLSI implementation. An application of the designed systolic array processors to the prime-factor DFT is also presented.

  • Centralized Fast Slant Transform Algorithms

    Jar-Ferr YANG  Chih-Peng FAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    705-711

    In this paper,we propose general fast one dimensional (1-D) and two dimensional (2-D) slant transform algorithms. By introducing simple and structural permutations, the heavily computational operations are centralized to become standardized and localized processing units. The total numbers of multiplications for the proposed fast 1-D and 2-D slant transforms are less than those of the existed methods. With advantages of convenient description in formulation and efficient computation for realization, the proposed fast slant transforms are suitable for applications in signal compression and pattern recognition.

  • Interval Finding and Its Application to Data Mining

    Takeshi FUKUDA  Yasuhiko MORIMOTO  Shinichi MORISHITA  Takeshi TOKUYAMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    620-626

    In this paper, we investigate inverse problems of the interval query problem in application to data mining. Let I be the set of all intervals on U = {1, 2, , n}. Consider an objective function f(I), conditional functions ui(I) on I, and define an optimization problem of finding the interval I maximizing f(I) subject to ui(I) > Ki for given real numbers Ki (i = 1, 2, , h). We propose efficient alogorithms to solve the above optimization problem if the objective function is either additive or quotient, and the conditional functions are additive, where a function f is additive if f(I) = ΣiIf^(i) extending a function f^ on U, and quotient if it is represented as a quotient of two additive functions. We use computational-geometric methods such as convex hull, range searching, and multidimensional divide-and-conquer.

  • Modified Error Correction/Detection Decoding Scheme of Binary Hamming Codes

    Siu-Wai MOK  Mu-Zhong WANG  Kam-Chi LI  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:4
      Page(s):
    786-788

    A modified error correction/detection scheme based on the scheme by Yi and Lee is proposed. Algebraic decoding is used to perform error correction. Error detection is performed by an absolute value test. It is shown that the proposed scheme bridges the performance gap between Yi and Lee's scheme and Forney's optimal scheme.

  • Parallel File Access for Implementing Dynamic Load Balancing on a Massively Parallel Computer

    Masahisa SHIMIZU  Yasuhiro OUE  Kazumasa OHNISHI  Toru KITAMURA  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    466-472

    Because a massively parallel computer processes vast amounts of data and generates many access requests from multiple processors simultaneously, parallel secondary storage requires large capacity and high concurrency. One effective method of implementation of such secondary storage is to use disk arrays which have multiple disks connected in parallel. In this paper, we propose a parallel file access method named DECODE (dynamic express changing of data entry) in which load balancing of each disk is achieved by dynamic determination of the write data position. For resolution of the problem of data fragmentation which is caused by the relocation of data during a write process, the concept of "Equivalent Area" is introduced. We have performed a preliminary performance evaluation using software simulation under various access statuses by changing the access pattern, access size and stripe size and confirmed the effectiveness of load balancing with this method.

  • Non-Graph Based Approach on the Analysis of Pointers and Structures

    Dong-Soo HAN  Takao TSUDA  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    480-488

    In high performance compilers to process pointer-handling programs, precise pointer alias analysis is useful for the compilers to generate efficient object code. It is well known that most compiler techniques such as data flow analysis, dependence analysis, side effect analysis and optimizations are related to the alias problem. However, without data structure information, there is a limit on the precision of the alias analysis. Even though the automatic data structure detection problem is complex, when pointer manipulation satisfies some restrictions, some data structures can be detected automatically by compilers with some knowledge of aliases. In this paper, we propose an automatic data structure detection method for Pascal and Fortran 90. Linear list, tree and dag data structures are detected. Detected data structure information can be used not only for raising the precision of alias analysis but also for some optimizing techniques for pointer handling programs directly.

  • Extending SCI on Hierarchical Directory Trees for Large-Scale Multiprocessors

    Ing-Zong LU  Tien-Fu CHEN  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    434-440

    SCI (Scalable Coherent Interface) is pointerbased coherent directory scheme for massively parallel multiprocessors. Large message latency is one of the problems with SCI because of its linked list structure: the searching latency of messages could grow as a linear order of the number of processors. In this paper, we focus on a hierarchical architecture to propose a new schemeEST(Extending SCI-Tree), which may reduce the message traffic and also take the advantages of the topology property. Simulation results show that the EST scheme is effective in reducing message latency and communication cost when compared with other schemes.

  • The Method of Matrix-Order Reduction and Its Applications to Electromagnetic Problems

    Wei CAO  Naoki INAGAKI  Di WU  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:4
      Page(s):
    608-616

    A new numerical technique, termed the method of matrix-order reduction (MMOR), is developed for handling electromagnetic problems in this paper, in which the matrix equation resulted from a method-of-moments analysis is converted either to an eigenvalue equation or to another matrix equation with the matrix order in both cases being much reduced, and also, the accuracy of solution obtained by solving either of above equations is improved by means of a newly proposed generalized Jacobian iteration. As a result, this technique enjoys the advantages of less computational expenses and a relatively good solution accuracy as well. To testify this new technique, a number of wire antennas are examined and the calculated results are compared with those obtained by using the method of moments.

  • Node-to-Set Disjoint Paths with Optimal Length in Star Graphs

    Qian-Ping GU  Shietung PENG  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    425-433

    In this paper, we consider the following node-to-set disjoint paths problem: given a node s and a set T = {t1,...,tk} of k nodes in a k-connected graph G, find k node-disjoint paths s ti, 1 i k. We give an O(n2) time algorithm for the node-to-set disjoint paths problem in n-dimensional star graphs Gn which are (n - 1)-connected. The algorithm finds the n - 1 node-disjoint paths of length at most d(Gn) + 1 for n 4,6 and at most d(Gn) + 2 for n = 4,6, where d(Gn) = 3(n-1)/2 is the diameter of Gn. d(Gn) + 1 and d(Gn) + 2 are also the lower bounds on the length of the paths for the above problem in Gn for n 4,6 and n = 4,6, respectively.

  • Recent Development of Fiber-Optic Technology

    Yoichi FUJII  

     
    INVITED PAPER

      Vol:
    E80-B No:4
      Page(s):
    504-507

    A brief overview is done to the development of the fiber-optic technology. These recent topics, not the commonly established techniques, are described connecting with the developments of the basic concepts and the expected applications. Some of these newly introduced ideas will become the seeds for the future development of the fiber-optic technology. These seeds include the very deep understanding of the fiber material, new concepts for the fiber characteristics, the brandnew fiber-optic devices and the fiber-optic systems and the applications.

  • A Lookahead Heuristic for Heterogeneous Multiprocessor Scheduling with Communication Costs

    Dingchao LI  Akira MIZUNO  Yuji IWAHORI  Naohiro ISHII  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    489-494

    This paper describes a new approach to the scheduling problem that assigns tasks of a parallel program described as a task graph onto parallel machines. The approach handles interprocessor communication and heterogeneity, based on using both the theoretical results developed so far and a lookahead scheduling strategy. The experimental results on randomly generated task graphs demonstrate the effectiveness of this scheduling heuristic.

  • Parallel Algorithms for Maximal Linear Forests

    Ryuhei UEHARA  Zhi-Zhong CHEN  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    627-634

    The maximal linear forest problem is to find, given a graph G = (V, E), a maximal subset of V that induces a linear forest. Three parallel algorithms for this problem are presented. The first one is randomized and runs in O(log n) expected time using n2 processors on a CRCW PRAM. The second one is deterministic and runs in O(log 2n) timeusing n4 processors on an EREW PRAM. The last one is deterministic and runs in O(log 5n) time using n3 processors on an EREW PRAM. The results put the problem in the class NC.

  • The Largest Common Similar Substructure Problem

    Shaoming LIU  Eiichi TANAKA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    643-650

    This paper discusses the largest common similar substructure (in short, LCSS) problem for trees. The problem is, for all pairs of "substructure of A and that of B," to find one of them, denoted by A and B', such that A is most similar to B' and the sum of the number of vertices of A and that of B' is largest. An algorithm for the LCSS problem for unrooted and unordered trees (in short, trees) and that for trees embedded in a plane (in short, Co-trees) are proposed. The time complexity of the algorithm for trees is O (max (ma, mb)2 NaNb) and that for CO-trees is O (mambNaNb), where, ma (mb) and Na (Nb) are the largest degree of a vertex of tree Ta (Tb) and the number of vertices of Ta (Tb), respectively. It is easy to modify the algorithms for enumerating all of the LCSSs for trees and CO-trees. The algorithms can be applied to structure-activity studies in chemistry and various structure comparison problems.

  • Computational Power of Nondeterministic Ordered Binary Decision Diagrams and Their Subclasses

    Kazuyoshi TAKAGI  Koyo NITTA  Hironori BOUNO  Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    663-669

    Ordered Binary Decision Diagrams (OBDDs) are graph-based representations of Boolean functions which are widely used because of their good properties. In this paper, we introduce nondeterministic OBDDs (NOBDDs) and their restricted forms, and evaluate their expressive power. In some applications of OBDDs, canonicity, which is one of the good properties of OBDDs, is not necessary. In such cases, we can reduce the required amount of storage by using OBDDs in some non-canonical form. A class of NOBDDs can be used as a non-canonical form of OBDDs. In this paper, we focus on two particular methods which can be regarded as using restricted forms of NOBDDs. Our aim is to show how the size of OBDDs can be reduced in such forms from theoretical point of view. Firstly, we consider a method to solve satisfiability problem of combinational circuits using the structure of circuits as a key to reduce the NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of product terms. We show that the class of functions treated feasibly in this representation strictly contains that in OBDDs and contained by that in NOBDDs.

  • Compact Realization of Phase-Locked Loop Using Digital Control

    Masanori IZUMIKAWA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E80-C No:4
      Page(s):
    544-549

    This paper describes a phase-locked loop (PLL) with digital control featuring a binary quantizing circuit, a synchronizing algorithm, a lock detector and a compact D/A converter. The binary quantizing circuit and synchronizing algorithm make it possible to compare phase and frequency together and to reduce digital control logic by half. Interpolation of upper-bit D/A converter output by lower-bit output reduces the number of current sources of a 9 bit D/A converter from 511 to 80. SPICE simulation with a 0.25 µm CMOS has demonstrated that the development of 200 MHz PLL using digital control is feasible.

  • 3-Dimensional Beam Propagation Analysis of Nonlinear Optical Fibers

    Akira NIIYAMA  Masanori KOSHIBA  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    522-527

    A 3-dimensional beam propagation method is described for the analysis of nonlinear optical fibers, where the finite element and finite difference methods are, respectively, utilized for discretizing the fiber cross section and the propagation direction. For efficient evaluation of wide-angle beam propagation, Pade approximation is applied to the differential operator along the propagation direction. In order to improve accuracy of solutions, isoparametric elements and numerical integration formulae derived by Hammer et al. are introduced. The propagation characteristics of nonlinear optical fibers with linear core and nonlinear cladding are analyzed, and unique features of nonlinear guided-wave propagation, such as spatial soliton emission, are investigated.

  • Beam Forming Characteristics of a Waveguide-Type Optical Phased Array Antenna

    Yasushi MURAKAMI  Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:4
      Page(s):
    617-624

    This paper presents the beam forming characteristics of an optical waveguide-type phased array antenna. Four linearly arranged array antenna was monolithically fabricated on one LiNbO3 substrate containing variable power dividers (VPDs) and optical phase shifters (OPSs). The amplitude and the phase of each antenna element was controlled by applying DC voltage on each VPD and OPS. Open ends of Ti-indiffused waveguides were used as antenna elements. This antenna was designed to operate at 1.3 µm wavelength band. Experimental results confirm the good beam forming capability of optical phased array antennas.

  • A 6.93-µm2 Full CMOS SRAM Cell Technology for 1.8-V High-Performance Cache Memory

    Masataka MINAMI  Nagatoshi OHKI  Hiroshi ISHIDA  Toshiaki YAMANAKA  Akihiro SHIMIZU  Koichiro ISHIBASHI  Akira SATOH  Tokuo KURE  Takashi NISHIDA  Takahiro NAGANO  

     
    PAPER-Integrated Electronics

      Vol:
    E80-C No:4
      Page(s):
    590-596

    A high-performance microprocessor-compatible small size full CMOS SRAM cell technology for under 1.8-V operation has been developed. Less than 1-µm spacing between the n and pMOSFETs is achieved by using a retrograde well combined with SSS-OSELO technology. To connect the gates of a driver nMOSFET and a load pMOSFET directly, a 0.3-µm n-gate load pMOSFET, formed by amorphous-Si-film through-channel implantation, is merged with a 0.25-µm p-gate pMOSFET for the peripheral circuits. The memory cell area is reduced by using a mask-free contact process for the local interconnect, which includes titanium-nitride wet-etching using a plasma-TEOS silicone-dioxide mask. The newly developed memory cell was demonstrated using 0.25-µm CMOS process technology. A 6.93-µm2 and 1-V operation full CMOS SRAM cell with a high-performance circuit was achieved by a simple fabrication process.

  • Parallelized Simulation of Complicated Polymer Structures and lts Efficiency

    Kazuhito SHIDA  Kaoru OHNO  Masayuki KIMURA  Yoshiyuki KAWAZOE  

     
    PAPER

      Vol:
    E80-D No:4
      Page(s):
    531-537

    A large scale simulation for polymer chains in good solvent is performed. The implementation technique for efficient parallel execution, optimization, and load-balancing are discussed on this practical application. Finally, a simple performance model is proposed.

17881-17900hit(20498hit)