The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1781-1800hit(20498hit)

  • Malicious Code Detection for Trusted Execution Environment Based on Paillier Homomorphic Encryption Open Access

    Ziwang WANG  Yi ZHUANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/09/20
      Vol:
    E103-B No:3
      Page(s):
    155-166

    Currently, mobile terminals face serious security threats. A Trusted Execution Environment (TEE) which can provide an isolated execution environment for sensitive workloads, is seen as a trusted relay for providing security services for any mobile application. However, mobile TEE's architecture design and implementation strategy are not unbreakable at present. The existing researches lack of detect mechanisms for attack behaviour and malicious software. This paper proposes a Malicious code Detection scheme for Trusted Execution Environment based on Homomorphic Encryption (HE-TEEMD), which is a novel detection mechanism for data and code in the trusted execution environment. HE-TEEMD uses the Paillier additive homomorphic algorithm to implement the signature matching and transmits the ciphertext information generated in the TEE to the normal world for detection by the homomorphism and randomness of the homomorphic encryption ciphertext. An experiment and security analysis proves that our scheme can achieve malicious code detection in the secure world with minimal cost. Furthermore, evaluation parameters are introduced to address the known plaintext attack problem of privileged users.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • A Heuristic Proof Procedure for First-Order Logic

    Keehang KWON  

     
    LETTER

      Pubricized:
    2019/11/21
      Vol:
    E103-D No:3
      Page(s):
    549-552

    Inspired by the efficient proof procedures discussed in Computability logic [3],[5],[6], we describe a heuristic proof procedure for first-order logic. This is a variant of Gentzen sequent system [2] and has the following features: (a) it views sequents as games between the machine and the environment, and (b) it views proofs as a winning strategy of the machine. From this game-based viewpoint, a poweful heuristic can be extracted and a fair degree of determinism in proof search can be obtained. This article proposes a new deductive system LKg with respect to first-order logic and proves its soundness and completeness.

  • Slotted-ALOHA Based Average Consensus Problem with Adaptive Call-Occurrence Probability

    Koji ISHII  

     
    PAPER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    613-622

    This paper proposes an adaptive call-occurrence probability (COP) setting method for a slotted-ALOHA based consensus problem. Individual agents in the focused consensus problem control themselves in a distributed manner based on the partial information of overall control system which can be received only from the neighbor agents. In order to realize a reliable consensus problem based on wireless communications, we have to consider several constraints caused by the natures of wireless communications such as communication error, coverage, capacity, multi-user interference, half-duplex and so on. This work first investigates the impacts of wireless communication constraints, especially communication coverage, half-duplex, and multiple-access interference constraints, on the quality of control. To mitigate the impact of multiple-access constraint, we propose an adaptive COP setting method that changes the COP corresponding to the states of communication and control. The proposed adaptive COP based slotted-ALOHA needs the information about the number of neighbor agents at its own and neighbor agents, but can still work in a distributed manner. Computer simulations show that the proposed system can achieve better convergence performance compared to the case with the fixed COP based system.

  • Auxiliary-Noise Power-Scheduling Method for Online Secondary Path Modeling in Pre-Inverse Active Noise Control System

    Keisuke OKANO  Takaki ITATSU  Naoto SASAOKA  Yoshio ITOH  

     
    PAPER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    582-588

    We propose an auxiliary-noise power-scheduling method for a pre-inverse active noise control (PIANC) system. Conventional methods cannot reduce the power of auxiliary-noise due to the use of the filtered-x least mean square (FxLMS) algorithm. We developed our power-scheduling method for a PIANC system to solve this problem. Since a PIANC system uses a delayed input signal for a control filter, the proposed method delivers stability even if the acoustic path fluctuates. The proposed method also controls the gain of the auxiliary-noise based on the secondary-path-modeling state. The proposed method determines this state by the variation in the power of the secondary-path-modeling-error signal. Thus, the proposed method changes the power-scheduling of the auxiliary-noise. When the adaptive algorithm does not sufficiently converge, the proposed method injects auxiliary-noise. However, auxiliary-noise stops when the adaptive algorithm sufficiently converges. Therefore, the proposed method improves noise reduction performance.

  • An Approximation Algorithm for the 2-Dispersion Problem

    Kazuyuki AMANO  Shin-ichi NAKANO  

     
    PAPER

      Pubricized:
    2019/11/28
      Vol:
    E103-D No:3
      Page(s):
    506-508

    Let P be a set of points on the plane, and d(p, q) be the distance between a pair of points p, q in P. For a point p∈P and a subset S ⊂ P with |S|≥3, the 2-dispersion cost, denoted by cost2(p, S), of p with respect to S is the sum of (1) the distance from p to the nearest point in Ssetminus{p} and (2) the distance from p to the second nearest point in Ssetminus{p}. The 2-dispersion cost cost2(S) of S ⊂ P with |S|≥3 is minp∈S{cost2(p, S)}. Given a set P of n points and an integer k we wish to compute k point subset S of P with maximum cost2(S). In this paper we give a simple 1/({4sqrt{3}}) approximation algorithm for the problem.

  • Joint Optimization for User Association and Inter-Cell Interference Coordination Based on Proportional Fair Criteria in Small Cell Deployments

    Nobuhiko MIKI  Yusaku KANEHIRA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    253-261

    In small cell deployments, the combined usage of user association and inter-cell interference coordination (ICIC) is inevitable. This paper investigates the joint optimization of user association and ICIC in the downlink. We first formulate the joint optimization problem as a utility maximization problem. We then employ the logarithmic utility function known as the proportional fair criteria. The optimum user association and the ICIC are derived by solving a convex optimization problem based on the average spectral efficiencies of all users. We propose an iterative algorithm to obtain the optimum solution to this problem. We evaluate the performance of the proposed algorithm for the small cell deployments and shows that the proposed algorithm works well. We also compare the performance of the proposed algorithm based on utility maximization user association with the CRE, and show the superiority of the utility maximization. Furthermore, we show that intra-tier ICIC and inter-tier ICIC can effectively improve the throughput performance according to the conditions. It is also shown that the combined usage of inter-tier ICIC and intra-tier ICIC enhances the throughput performance compared to schemes employing either the inter- or intra-tier ICIC scheme.

  • Generalized Register Context-Free Grammars

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2019/11/21
      Vol:
    E103-D No:3
      Page(s):
    540-548

    Register context-free grammars (RCFG) is an extension of context-free grammars to handle data values in a restricted way. In RCFG, a certain number of data values in registers are associated with each nonterminal symbol and a production rule has the guard condition, which checks the equality between the content of a register and an input data value. This paper starts with RCFG and introduces register type, which is a finite representation of a relation among the contents of registers. By using register type, the paper provides a translation of RCFG to a normal form and ϵ-removal from a given RCFG. We then define a generalized RCFG (GRCFG) where an arbitrary binary relation can be specified in the guard condition. Since the membership and emptiness problems are shown to be undecidable in general, we extend register type for GRCFG and introduce two properties of GRCFG, simulation and progress, which guarantee the decidability of these problems. As a corollary, these problems are shown to be EXPTIME-complete for GRCFG with a total order over a dense set.

  • Parallelization of Boost and Buck Type DC-DC Converters by Individual Passivity-Based Control Open Access

    Yuma MURAKAWA  Yuhei SADANDA  Takashi HIKIHARA  

     
    PAPER-Systems and Control

      Vol:
    E103-A No:3
      Page(s):
    589-595

    This paper discusses the parallelization of boost and buck converters. Passivity-based control is applied to each converter to achieve the asymptotic stability of the system. The ripple characteristics, error characteristics, and time constants of the parallelized converters are discussed with considering the dependency on the feedback gains. The numerical results are confirmed to coincide with the results in the experiment for certain feedback gains. The stability of the system is also discussed in simulation and experiment. The results will be a step to achieve the design of parallel converters.

  • Outage Performance of Multi-Carrier Relay Selections in Multi-Hop OFDM with Index Modulation

    Pengli YANG  Fuqi MU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    638-642

    In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.

  • Dual Network Fusion for Person Re-Identification

    Lin DU  Chang TIAN  Mingyong ZENG  Jiabao WANG  Shanshan JIAO  Qing SHEN  Guodong WU  

     
    LETTER-Image

      Vol:
    E103-A No:3
      Page(s):
    643-648

    Feature learning based on deep network has been verified as beneficial for person re-identification (Re-ID) in recent years. However, most researches use a single network as the baseline, without considering the fusion of different deep features. By analyzing the attention maps of different networks, we find that the information learned by different networks can complement each other. Therefore, a novel Dual Network Fusion (DNF) framework is proposed. DNF is designed with a trunk branch and two auxiliary branches. In the trunk branch, deep features are cascaded directly along the channel direction. One of the auxiliary branch is channel attention branch, which is used to allocate weight for different deep features. Another one is multi-loss training branch. To verify the performance of DNF, we test it on three benchmark datasets, including CUHK03NP, Market-1501 and DukeMTMC-reID. The results show that the effect of using DNF is significantly better than a single network and is comparable to most state-of-the-art methods.

  • Defragmentation with Reroutable Backup Paths in Toggled 1+1 Protection Elastic Optical Networks

    Takaaki SAWA  Fujun HE  Takehiro SATO  Bijoy Chand CHATTERJEE  Eiji OKI  

     
    PAPER-Network Management/Operation

      Pubricized:
    2019/09/03
      Vol:
    E103-B No:3
      Page(s):
    211-223

    This paper proposes a defragmentation scheme using reroutable backup paths in toggled-based quasi 1+1 path protected elastic optical networks (EONs) to improve the efficiency of defragmentation and suppress the fragmentation effect. The proposed scheme can reallocate spectrum slots of backup paths and reroute of backup paths. The path exchange function of the proposed scheme makes the primary paths become the backup state while the backup paths become the primary. This allows utilization of the advantages of defragmentation in both primary and backup paths. We formulate a static spectrum reallocation problem with rerouting (SSRR) in the toggled-based quasi 1+1 path protected EON as an integer linear programming (ILP) problem. The decision version of SSRR is proven to be an NP-complete problem. A heuristic algorithm is introduced to solve the problem for large networks networks where the ILP problem is not tractable. For a dynamic traffic scenario, an approach that suppresses the fragmentation considering rerouting and path exchanging operations is presented. We evaluate the performances of the proposed scheme by comparing it to the conventional scheme in terms of dependencies on node degree, processing time of network operations and interval time between scheduled defragmentations. The numerical results obtained from the performance evaluation indicate that the proposed scheme increases the traffic admissibility compared to the conventional scheme.

  • Identifying Link Layer Home Network Topologies Using HTIP

    Yoshiyuki MIHARA  Shuichi MIYAZAKI  Yasuo OKABE  Tetsuya YAMAGUCHI  Manabu OKAMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    566-577

    In this article, we propose a method to identify the link layer home network topology, motivated by applications to cost reduction of support centers. If the topology of home networks can be identified automatically and efficiently, it is easier for operators of support centers to identify fault points. We use MAC address forwarding tables (AFTs) which can be collected from network devices. There are a couple of existing methods for identifying a network topology using AFTs, but they are insufficient for our purpose; they are not applicable to some specific network topologies that are typical in home networks. The advantage of our method is that it can handle such topologies. We also implemented these three methods and compared their running times. The result showed that, despite its wide applicability, our method is the fastest among the three.

  • Range Points Migration Based Spectroscopic Imaging Algorithm for Wide-Beam Terahertz Subsurface Sensor Open Access

    Takamaru MATSUI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/09/25
      Vol:
    E103-C No:3
      Page(s):
    127-130

    Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.

  • Bounds for the Multislope Ski-Rental Problem

    Hiroshi FUJIWARA  Kei SHIBUSAWA  Kouki YAMAMOTO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    481-488

    The multislope ski-rental problem is an online optimization problem that generalizes the classical ski-rental problem. The player is offered not only a buy and a rent options but also other options that charge both initial and per-time fees. The competitive ratio of the classical ski-rental problem is known to be 2. In contrast, the best known so far on the competitive ratio of the multislope ski-rental problem is an upper bound of 4 and a lower bound of 3.62. In this paper we consider a parametric version of the multislope ski-rental problem, regarding the number of options as a parameter. We prove an upper bound for the parametric problem which is strictly less than 4. Moreover, we give a simple recurrence relation that yields an equation having a lower bound value as its root.

  • An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries

    Satoshi MATSUMOTO  Tomoyuki UCHIDA  Takayoshi SHOUDAI  Yusuke SUZUKI  Tetsuhiro MIYAHARA  

     
    PAPER

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    526-539

    A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.

  • An ATM Security Measure to Prevent Unauthorized Deposit with a Smart Card

    Hisao OGATA  Tomoyoshi ISHIKAWA  Norichika MIYAMOTO  Tsutomu MATSUMOTO  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/12/09
      Vol:
    E103-D No:3
      Page(s):
    590-601

    Recently, criminals frequently utilize logical attacks to Automated Teller Machines (ATMs) and financial institutes' (FIs') networks to steal cash. We proposed a security measure utilizing peripheral devices in an ATM for smart card transactions to prevent “unauthorized cash withdrawals” of logical attacks, and the fundamental framework as a generalized model of the measure in other paper. As the measure can prevent those logical attacks with tamper-proof hardware, it is quite difficult for criminals to compromise the measure. However, criminals can still carry out different types of logical attacks to ATMs, such as “unauthorized deposit”, to steal cash. In this paper, we propose a security measure utilizing peripheral devices to prevent unauthorized deposits with a smart card. The measure needs to protect multiple transaction sub-processes in a deposit transaction from multiple types of logical attacks and to be harmonized with existing ATM system/operations. A suitable implementation of the fundamental framework is required for the measure and such implementation design is confusing due to many items to be considered. Thus, the measure also provides an implementation model analysis of the fundamental framework to derive suitable implementation for each defense point in a deposit transaction. Two types of measure implementation are derived as the result of the analysis.

  • Real-Time Generic Object Tracking via Recurrent Regression Network

    Rui CHEN  Ying TONG  Ruiyu LIANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    602-611

    Deep neural networks have achieved great success in visual tracking by learning a generic representation and leveraging large amounts of training data to improve performance. Most generic object trackers are trained from scratch online and do not benefit from a large number of videos available for offline training. We present a real-time generic object tracker capable of incorporating temporal information into its model, learning from many examples offline and quickly updating online. During the training process, the pre-trained weight of convolution layer is updated lagging behind, and the input video sequence length is gradually increased for fast convergence. Furthermore, only the hidden states in recurrent network are updated to guarantee the real-time tracking speed. The experimental results show that the proposed tracking method is capable of tracking objects at 150 fps with higher predicting overlap rate, and achieves more robustness in multiple benchmarks than state-of-the-art performance.

  • Leveraging Neural Caption Translation with Visually Grounded Paraphrase Augmentation

    Johanes EFFENDI  Sakriani SAKTI  Katsuhito SUDOH  Satoshi NAKAMURA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    674-683

    Since a concept can be represented by different vocabularies, styles, and levels of detail, a translation task resembles a many-to-many mapping task from a distribution of sentences in the source language into a distribution of sentences in the target language. This viewpoint, however, is not fully implemented in current neural machine translation (NMT), which is one-to-one sentence mapping. In this study, we represent the distribution itself as multiple paraphrase sentences, which will enrich the model context understanding and trigger it to produce numerous hypotheses. We use a visually grounded paraphrase (VGP), which uses images as a constraint of the concept in paraphrasing, to guarantee that the created paraphrases are within the intended distribution. In this way, our method can also be considered as incorporating image information into NMT without using the image itself. We implement this idea by crowdsourcing a paraphrasing corpus that realizes VGP and construct neural paraphrasing that behaves as expert models in a NMT. Our experimental results reveal that our proposed VGP augmentation strategies showed improvement against a vanilla NMT baseline.

  • Neural Machine Translation with Target-Attention Model

    Mingming YANG  Min ZHANG  Kehai CHEN  Rui WANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/26
      Vol:
    E103-D No:3
      Page(s):
    684-694

    Attention mechanism, which selectively focuses on source-side information to learn a context vector for generating target words, has been shown to be an effective method for neural machine translation (NMT). In fact, generating target words depends on not only the source-side information but also the target-side information. Although the vanilla NMT can acquire target-side information implicitly by recurrent neural networks (RNN), RNN cannot adequately capture the global relationship between target-side words. To solve this problem, this paper proposes a novel target-attention approach to capture this information, thus enhancing target word predictions in NMT. Specifically, we propose three variants of target-attention model to directly obtain the global relationship among target words: 1) a forward target-attention model that uses a target attention mechanism to incorporate previous historical target words into the prediction of the current target word; 2) a reverse target-attention model that adopts a reverse RNN model to obtain the entire reverse target words information, and then to combine with source context information to generate target sequence; 3) a bidirectional target-attention model that combines the forward target-attention model and reverse target-attention model together, which can make full use of target words to further improve the performance of NMT. Our methods can be integrated into both RNN based NMT and self-attention based NMT, and help NMT get global target-side information to improve translation performance. Experiments on the NIST Chinese-to-English and the WMT English-to-German translation tasks show that the proposed models achieve significant improvements over state-of-the-art baselines.

1781-1800hit(20498hit)