The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1561-1580hit(20498hit)

  • Measurement of Spectral Transfer Matrix for DMD Analysis by Using Linear Optical Sampling

    Yuki OSAKA  Fumihiko ITO  Daisuke IIDA  Tetsuya MANABE  

     
    PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1233-1239

    Mode-by-mode impulse responses, or spectral transfer matrix (STM) of birefringent fibers are measured by using linear optical sampling, with assist of polarization multiplexed probe pulse. By using the eigenvalue analysis of the STM, the differential mode delay and PMD vector of polarization-maintaining fiber are analyzed as a function of optical frequency over 1THz. We show that the amplitude averaging of the complex impulse responses is effective for enhancing the signal-to-noise ratio of the measurement, resulting in improving the accuracy and expanding the bandwidth of the measurement.

  • Program File Placement Strategies for Machine-to-Machine Service Network Platform in Dynamic Scenario

    Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:11
      Page(s):
    1353-1366

    The machine-to-machine (M2M) service network platform that accommodates and controls various types of Internet of Things devices has been presented. This paper investigates program file placement strategies for the M2M service network platform that achieve low blocking ratios of new task requests and accommodate as many tasks as possible in the dynamic scenario. We present four strategies for determining program file placement, which differ in the computation method and whether the relocation of program files being used by existing tasks is allowed or not. Simulation results show that a strategy based on solving a mixed-integer linear programming model achieves the lowest blocking ratio, but a heuristic algorithm-based strategy can be an attractive option by allowing recomputation of the placement when the placement cannot be obtained at the timing of new task request arrival.

  • Rephrasing Visual Questions by Specifying the Entropy of the Answer Distribution

    Kento TERAO  Toru TAMAKI  Bisser RAYTCHEV  Kazufumi KANEDA  Shin'ichi SATOH  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/08/20
      Vol:
    E103-D No:11
      Page(s):
    2362-2370

    Visual question answering (VQA) is a task of answering a visual question that is a pair of question and image. Some visual questions are ambiguous and some are clear, and it may be appropriate to change the ambiguity of questions from situation to situation. However, this issue has not been addressed by any prior work. We propose a novel task, rephrasing the questions by controlling the ambiguity of the questions. The ambiguity of a visual question is defined by the use of the entropy of the answer distribution predicted by a VQA model. The proposed model rephrases a source question given with an image so that the rephrased question has the ambiguity (or entropy) specified by users. We propose two learning strategies to train the proposed model with the VQA v2 dataset, which has no ambiguity information. We demonstrate the advantage of our approach that can control the ambiguity of the rephrased questions, and an interesting observation that it is harder to increase than to reduce ambiguity.

  • Algorithms for Distributed Server Allocation Problem

    Takaaki SAWA  Fujun HE  Akio KAWABATA  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:11
      Page(s):
    1341-1352

    This paper proposes two algorithms, namely Server-User Matching (SUM) algorithm and Extended Server-User Matching (ESUM) algorithm, for the distributed server allocation problem. The server allocation problem is to determine the matching between servers and users to minimize the maximum delay, which is the maximum time to complete user synchronization. We analyze the computational time complexity. We prove that the SUM algorithm obtains the optimal solutions in polynomial time for the special case that all server-server delay values are the same and constant. We provide the upper and lower bounds when the SUM algorithm is applied to the general server allocation problem. We show that the ESUM algorithm is a fixed-parameter tractable algorithm that can attain the optimal solution for the server allocation problem parameterized by the number of servers. Numerical results show that the computation time of ESUM follows the analyzed complexity while the ESUM algorithm outperforms the approach of integer linear programming solved by our examined solver.

  • Robust Transferable Subspace Learning for Cross-Corpus Facial Expression Recognition

    Dongliang CHEN  Peng SONG  Wenjing ZHANG  Weijian ZHANG  Bingui XU  Xuan ZHOU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/07/20
      Vol:
    E103-D No:10
      Page(s):
    2241-2245

    In this letter, we propose a novel robust transferable subspace learning (RTSL) method for cross-corpus facial expression recognition. In this method, on one hand, we present a novel distance metric algorithm, which jointly considers the local and global distance distribution measure, to reduce the cross-corpus mismatch. On the other hand, we design a label guidance strategy to improve the discriminate ability of subspace. Thus, the RTSL is much more robust to the cross-corpus recognition problem than traditional transfer learning methods. We conduct extensive experiments on several facial expression corpora to evaluate the recognition performance of RTSL. The results demonstrate the superiority of the proposed method over some state-of-the-art methods.

  • Single Stage Vehicle Logo Detector Based on Multi-Scale Prediction

    Junxing ZHANG  Shuo YANG  Chunjuan BO  Huimin LU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/07/14
      Vol:
    E103-D No:10
      Page(s):
    2188-2198

    Vehicle logo detection technology is one of the research directions in the application of intelligent transportation systems. It is an important extension of detection technology based on license plates and motorcycle types. A vehicle logo is characterized by uniqueness, conspicuousness, and diversity. Therefore, thorough research is important in theory and application. Although there are some related works for object detection, most of them cannot achieve real-time detection for different scenes. Meanwhile, some real-time detection methods of single-stage have performed poorly in the object detection of small sizes. In order to solve the problem that the training samples are scarce, our work in this paper is improved by constructing the data of a vehicle logo (VLD-45-S), multi-stage pre-training, multi-scale prediction, feature fusion between deeper with shallow layer, dimension clustering of the bounding box, and multi-scale detection training. On the basis of keeping speed, this article improves the detection precision of the vehicle logo. The generalization of the detection model and anti-interference capability in real scenes are optimized by data enrichment. Experimental results show that the accuracy and speed of the detection algorithm are improved for the object of small sizes.

  • Optimization of Deterministic Pilot Pattern Placement Based on Quantum Genetic Algorithm for Sparse Channel Estimation in OFDM Systems

    Yang NIE  Xinle YU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1164-1171

    This paper proposes a deterministic pilot pattern placement optimization scheme based on the quantum genetic algorithm (QGA) which aims to improve the performance of sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. By minimizing the mutual incoherence property (MIP) of the sensing matrix, the pilot pattern placement optimization is modeled as the solution of a combinatorial optimization problem. QGA is used to solve the optimization problem and generate optimized pilot pattern that can effectively avoid local optima traps. The simulation results demonstrate that the proposed method can generate a sensing matrix with a smaller MIP than a random search or the genetic algorithm (GA), and the optimized pilot pattern performs well for sparse channel estimation in OFDM systems.

  • Efficient Algorithms for the Partial Sum Dispersion Problem

    Toshihiro AKAGI  Tetsuya ARAKI  Shin-ichi NAKANO  

     
    PAPER-optimization

      Vol:
    E103-A No:10
      Page(s):
    1206-1210

    The dispersion problem is a variant of the facility location problem. Given a set P of n points and an integer k, we intend to find a subset S of P with |S|=k such that the cost minp∈S{cost(p)} is maximized, where cost(p) is the sum of the distances from p to the nearest c points in S. We call the problem the dispersion problem with partial c sum cost, or the PcS-dispersion problem. In this paper we present two algorithms to solve the P2S-dispersion problem(c=2) if all points of P are on a line. The running times of the algorithms are O(kn2 log n) and O(n log n), respectively. We also present an algorithm to solve the PcS-dispersion problem if all points of P are on a line. The running time of the algorithm is O(knc+1).

  • On Dimensionally Orthogonal Diagonal Hypercubes Open Access

    Xiao-Nan LU  Tomoko ADACHI  

     
    PAPER-combinatorics

      Vol:
    E103-A No:10
      Page(s):
    1211-1217

    In this paper, we propose a notion for high-dimensional generalizations of mutually orthogonal Latin squares (MOLS) and mutually orthogonal diagonal Latin squares (MODLS), called mutually dimensionally orthogonal d-cubes (MOC) and mutually dimensionally orthogonal diagonal d-cubes (MODC). Systematic constructions for MOC and MODC by using polynomials over finite fields are investigated. In particular, for 3-dimensional cubes, the results for the maximum possible number of MODC are improved by adopting the proposed construction.

  • Complex Orthogonal Variable Spreading Factor Codes Based on Polyphase Sequences Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  

     
    PAPER-communication

      Vol:
    E103-A No:10
      Page(s):
    1218-1226

    The direct sequence code division multiple access (DS-CDMA) technique is widely used in various communication systems. When adopting orthogonal variable spreading factor (OVSF) codes, DS-CDMA is particularly suitable for supporting multi-user/multi-rate data transmission services. A useful property of OVSF codes is that no two code sequences assigned to different users will ever interfere with each other, even if their spreading factors are different. Conventional OVSF codes are constructed based on binary orthogonal codes, called Walsh codes, and OVSF code sequences are binary sequences. In this paper, we propose new OVSF codes that are constructed based on polyphase orthogonal codes and consist of complex sequences in which each symbol is represented as a complex number. Construction of the proposed codes is based on a tree structure that is similar to conventional OVSF codes. Since the proposed codes are generalized versions of conventional OVSF codes, any conventional OVSF code can be presented as a special case of the proposed codes. Herein, we show the method used to construct the proposed OVSF codes, after which the orthogonality of the codes, including conventional OVSF codes, is investigated. Among the advantages of our proposed OVSF codes is that the spreading factor can be designed more flexibly in each layer than is possible with conventional OVSF codes. Furthermore, combination of the proposed code and a non-binary phase modulation is well suited to DS-CDMA systems where the level fluctuation of signal envelope is required to be suppressed.

  • IMD Components Compensation Conditions for Dual-Band Feed-Forward Power Amplifier

    Yasunori SUZUKI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/05/01
      Vol:
    E103-C No:10
      Page(s):
    434-444

    This paper presents analysis results of the intermodulation distortion (IMD) components compensation conditions for dual-band feed-forward power amplifier (FFPA) when inputting dual-band signals simultaneously. The signal cancellation loop and distortion cancellation loop of the dual-band FFPA have frequency selective adjustment paths which consist of filter and vector regulator. The filter selects the desired frequency component and suppresses the undesired frequency component in the desired frequency selective adjustment path. The vector regulators repeatedly adjust the amplitude and phase values of the composite components for the desired and suppressed undesired frequency components. In this configuration, the cancellation levels of the signal cancellation loop and distortion cancellation loop are depending on the amplitude and phase errors of the vector regulator. The analysis results show that the amplitude and phase errors of the desired frequency component almost become independent that of the undesired frequency component in a weak non-linearity condition, when the isolation between the desired band and the undesired band given by the filter is more than 40 dB. The amplitude errors of the desired frequency component are dependent on that of the undesired frequency component in a strong non-linear conditions when the isolation level sets as above. A 1-W-class signal cancellation loop and 20-W-class FFPA are fabricated for 1.7-GHz and 2.1-GHz bands simultaneous operation. The experimental results show that the analysis results are suitable in the experimental conditions. From these investigations, the analysis results can provide a commercially available dual-band FFPA. To our best knowledge, this is first analysis results for the dual-band FFPA.

  • Rapid Single-Flux-Quantum NOR Logic Gate Realized through the Use of Toggle Storage Loop

    Yoshinao MIZUGAKI  Koki YAMAZAKI  Hiroshi SHIMADA  

     
    BRIEF PAPER-Superconducting Electronics

      Pubricized:
    2020/04/13
      Vol:
    E103-C No:10
      Page(s):
    547-549

    Recently, we demonstrated a rapid-single-flux-quantum NOT gate comprising a toggle storage loop. In this paper, we present our design and operation of a NOR gate that is a straightforward extension of the NOT gate by attaching a confluence buffer. Parameter margins wider than ±28% were confirmed in simulation. Functional tests using Nb integrated circuits demonstrated correct NOR operation with a bias margin of ±21%.

  • A Novel Large-Angle ISAR Imaging Algorithm Based on Dynamic Scattering Model

    Ping LI  Feng ZHOU  Bo ZHAO  Maliang LIU  Huaxi GU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:10
      Page(s):
    524-532

    This paper presents a large-angle imaging algorithm based on a dynamic scattering model for inverse synthetic aperture radar (ISAR). In this way, more information can be presented in an ISAR image than an ordinary RD image. The proposed model describes the scattering characteristics of ISAR target varying with different observation angles. Based on this model, feature points in each sub-image of the ISAR targets are extracted and matched using the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) algorithms. Using these feature points, high-precision rotation angles are obtained via joint estimation, which makes it possible to achieve a large angle imaging using the back-projection algorithm. Simulation results verifies the validity of the proposed method.

  • Maximum Positioning Error Estimation Method for Detecting User Positions with Unmanned Aerial Vehicle based on Doppler Shifts Open Access

    Hiroyasu ISHIKAWA  Yuki HORIKAWA  Hideyuki SHINONAGA  

     
    PAPER

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:10
      Page(s):
    1069-1077

    In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.

  • User-Assisted QoS Control for QoE Enhancement in Audiovisual and Haptic Interactive IP Communications

    Toshiro NUNOME  Suguru KAEDE  Shuji TASAKA  

     
    PAPER-Network

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1107-1116

    In this paper, we propose a user-assisted QoS control scheme that utilizes media adaptive buffering to enhance QoE of audiovisual and haptic IP communications. The scheme consists of two modes: a manual mode and an automatic mode. It enables users to switch between these two modes according to their inclinations. We compare four QoS control schemes: the manual mode only, the automatic mode only, the switching scheme starting with the manual mode, and the switching scheme starting with the automatic mode. We assess the effects of the four schemes, user attributes, and tasks on QoE through a subjective experiment which provides information on users' behavior in addition to QoE scores. As a result of the experiment, we show that the user-assisted QoS control scheme can enhance QoE. Furthermore, we notice that the proper QoS control scheme depends on user attributes and tasks.

  • Efficient Salient Object Detection Model with Dilated Convolutional Networks

    Fei GUO  Yuan YANG  Yong GAO  Ningmei YU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2199-2207

    Introduction of Fully Convolutional Networks (FCNs) has made record progress in salient object detection models. However, in order to retain the input resolutions, deconvolutional networks with unpooling are applied on top of FCNs. This will cause the increase of the computation and network model size in segmentation task. In addition, most deep learning based methods always discard effective saliency prior knowledge completely, which are shown effective. Therefore, an efficient salient object detection method based on deep learning is proposed in our work. In this model, dilated convolutions are exploited in the networks to produce the output with high resolution without pooling and adding deconvolutional networks. In this way, the parameters and depth of the network are decreased sharply compared with the traditional FCNs. Furthermore, manifold ranking model is explored for the saliency refinement to keep the spatial consistency and contour preserving. Experimental results verify that performance of our method is superior with other state-of-art methods. Meanwhile, the proposed model occupies the less model size and fastest processing speed, which is more suitable for the wearable processing systems.

  • System Throughput Gain by New Channel Allocation Scheme for Spectrum Suppressed Transmission in Multi-Channel Environments over a Satellite Transponder

    Sumika OMATA  Motoi SHIRAI  Takatoshi SUGIYAMA  

     
    PAPER

      Pubricized:
    2020/03/27
      Vol:
    E103-B No:10
      Page(s):
    1059-1068

    A spectrum suppressed transmission that increases the frequency utilization efficiency, defined as throughput/bandwidth, by suppressing the required bandwidth has been proposed. This is one of the most effective schemes to solve the exhaustion problem of frequency bandwidths. However, in spectrum suppressed transmission, its transmission quality potentially degrades due to the ISI making the bandwidth narrower than the Nyquist bandwidth. In this paper, in order to improve the transmission quality degradation, we propose the spectrum suppressed transmission applying both FEC (forward error correction) and LE (linear equalization). Moreover, we also propose a new channel allocation scheme for the spectrum suppressed transmission, in multi-channel environments over a satellite transponder. From our computer simulation results, we clarify that the proposed schemes are more effective at increasing the system throughput than the scheme without spectrum suppression.

  • Empirical Evaluation of Mimic Software Project Data Sets for Software Effort Estimation

    Maohua GAN  Zeynep YÜCEL  Akito MONDEN  Kentaro SASAKI  

     
    PAPER-Software Engineering

      Pubricized:
    2020/07/03
      Vol:
    E103-D No:10
      Page(s):
    2094-2103

    To conduct empirical research on industry software development, it is necessary to obtain data of real software projects from industry. However, only few such industry data sets are publicly available; and unfortunately, most of them are very old. In addition, most of today's software companies cannot make their data open, because software development involves many stakeholders, and thus, its data confidentiality must be strongly preserved. To that end, this study proposes a method for artificially generating a “mimic” software project data set, whose characteristics (such as average, standard deviation and correlation coefficients) are very similar to a given confidential data set. Instead of using the original (confidential) data set, researchers are expected to use the mimic data set to produce similar results as the original data set. The proposed method uses the Box-Muller transform for generating normally distributed random numbers; and exponential transformation and number reordering for data mimicry. To evaluate the efficacy of the proposed method, effort estimation is considered as potential application domain for employing mimic data. Estimation models are built from 8 reference data sets and their concerning mimic data. Our experiments confirmed that models built from mimic data sets show similar effort estimation performance as the models built from original data sets, which indicate the capability of the proposed method in generating representative samples.

  • Proposing High-Smart Approach for Content Authentication and Tampering Detection of Arabic Text Transmitted via Internet

    Fahd N. AL-WESABI  

     
    PAPER-Information Network

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2104-2112

    The security and reliability of Arabic text exchanged via the Internet have become a challenging area for the research community. Arabic text is very sensitive to modify by malicious attacks and easy to make changes on diacritics i.e. Fat-ha, Kasra and Damma, which are represent the syntax of Arabic language and can make the meaning is differing. In this paper, a Hybrid of Natural Language Processing and Zero-Watermarking Approach (HNLPZWA) has been proposed for the content authentication and tampering detection of Arabic text. The HNLPZWA approach embeds and detects the watermark logically without altering the original text document to embed a watermark key. Fifth level order of word mechanism based on hidden Markov model is integrated with digital zero-watermarking techniques to improve the tampering detection accuracy issues of the previous literature proposed by the researchers. Fifth-level order of Markov model is used as a natural language processing technique in order to analyze the Arabic text. Moreover, it extracts the features of interrelationship between contexts of the text and utilizes the extracted features as watermark information and validates it later with attacked Arabic text to detect any tampering occurred on it. HNLPZWA has been implemented using PHP with VS code IDE. Tampering detection accuracy of HNLPZWA is proved with experiments using four datasets of varying lengths under multiple random locations of insertion, reorder and deletion attacks of experimental datasets. The experimental results show that HNLPZWA is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection.

  • A Visual Inspection System for Accurate Positioning of Railway Fastener

    Jianwei LIU  Hongli LIU  Xuefeng NI  Ziji MA  Chao WANG  Xun SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2208-2215

    Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.

1561-1580hit(20498hit)