The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

1641-1660hit(20498hit)

  • Development of a Low Frequency Electric Field Probe Integrating Data Acquisition and Storage

    Zhongyuan ZHOU  Mingjie SHENG  Peng LI  Peng HU  Qi ZHOU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2020/02/27
      Vol:
    E103-C No:8
      Page(s):
    345-352

    A low frequency electric field probe that integrates data acquisition and storage is developed in this paper. An electric small monopole antenna printed on the circuit board is used as the receiving antenna; the rear end of the monopole antenna is connected to the integral circuit to achieve the flat frequency response; the logarithmic detection method is applied to obtain a high measurement dynamic range. In addition, a Microprogrammed Control Unit is set inside to realize data acquisition and storage. The size of the probe developed is not exceeding 20 mm × 20 mm × 30 mm. The field strength 0.2 V/m ~ 261 V/m can be measured in the frequency range of 500 Hz ~ 10 MHz, achieving a dynamic range over 62 dB. It is suitable for low frequency electric field strength measurement and shielding effectiveness test of small shield.

  • Combining Siamese Network and Regression Network for Visual Tracking

    Yao GE  Rui CHEN  Ying TONG  Xuehong CAO  Ruiyu LIANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/05/13
      Vol:
    E103-D No:8
      Page(s):
    1924-1927

    We combine the siamese network and the recurrent regression network, proposing a two-stage tracking framework termed as SiamReg. Our method solves the problem that the classic siamese network can not judge the target size precisely and simplifies the procedures of regression in the training and testing process. We perform experiments on three challenging tracking datasets: VOT2016, OTB100, and VOT2018. The results indicate that, after offline trained, SiamReg can obtain a higher expected average overlap measure.

  • On Wafer Noise Figure De-Embedding Method for CMOS Differential LNA

    Maizan MUHAMAD  Norhayati SOIN  Harikrishnan RAMIAH  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/01/20
      Vol:
    E103-C No:7
      Page(s):
    335-340

    This paper presents on-wafer noise figure (NF) de-embedding method of differential low noise amplifier (LNA). The characterization of NF was set up and referred as multi-stage network. The Friis law was applied to improve from the noise contributions from the subsequent stages. The correlated differential NF is accurately obtained after de-embedding the noise contribution from the interconnections and external components. Details of equations and measurement procedure are reported in this work. A 2.4GHz differential LNA was tested to demonstrate the feasibility of measurement and showed precise NF compared with other methods. The result shows an NF of 0.57dB achieved using de-embedding method and 1.06dB obtained without the de-embedding method. This is an improvement of 0.49dB of NF measurement.

  • Improving Faster R-CNN Framework for Multiscale Chinese Character Detection and Localization

    Minseong KIM  Hyun-Chul CHOI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/04/06
      Vol:
    E103-D No:7
      Page(s):
    1777-1781

    Faster R-CNN uses a region proposal network which consists of a single scale convolution filter and fully connected networks to localize detected regions. However, using a single scale filter is not enough to detect full regions of characters. In this letter, we propose a simple but effective way, i.e., utilizing variously sized convolution filters, to accurately detect Chinese characters of multiple scales in documents. We experimentally verified that our method improved IoU by 4% and detection rate by 3% than the previous single scale Faster R-CNN method.

  • Intrusion Detection System Using Deep Learning and Its Application to Wi-Fi Network

    Kwangjo KIM  

     
    INVITED PAPER

      Pubricized:
    2020/03/31
      Vol:
    E103-D No:7
      Page(s):
    1433-1447

    Deep learning is gaining more and more lots of attractions and better performance in implementing the Intrusion Detection System (IDS), especially for feature learning. This paper presents the state-of-the-art advances and challenges in IDS using deep learning models, which have been achieved the big performance enhancements in the field of computer vision, natural language processing, and image/audio processing than the traditional methods. After providing a systematic and methodical description of the latest developments in deep learning from the points of the deployed architectures and techniques, we suggest the pros-and-cons of all the deep learning-based IDS, and discuss the importance of deep learning models as feature learning approach. For this, the author has suggested the concept of the Deep-Feature Extraction and Selection (D-FES). By combining the stacked feature extraction and the weighted feature selection for D-FES, our experiment was verified to get the best performance of detection rate, 99.918% and false alarm rate, 0.012% to detect the impersonation attacks in Wi-Fi network which can be achieved better than the previous publications. Summary and further challenges are suggested as a concluding remark.

  • S-Parameter Analysis for Balanced and Unbalanced Modes Corresponding Dissipated Power of a Small Antenna

    Takashi YANAGI  Yasuhiro NISHIOKA  Toru FUKASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/01/15
      Vol:
    E103-B No:7
      Page(s):
    780-786

    In this paper, an analysis method for calculating balanced and unbalanced modes of a small antenna is summarized. Modal condactances which relate dissipated power of the antenna are directly obtained from standard S-parameters that we can measure by a 2-port network analyzer. We demonstrate the validity and effectiveness of the proposed method by simulation and measurement for a dipole antenna with unbalaned feed. The ratio of unbalanced-mode power to the total power (unbalanced-mode power ratio) calculated by the proposed method agrees precisely with that yielded by the conventional method using measured radiation patterns. Furthermore, we analyze a small loop antenna with unbalanced feed by the proposed method and show that the self-balancing characteristic appears when the loop is set in resonant state by loading capacitances or the whole length of the loop is less than 1/20th the wavelength.

  • DomainScouter: Analyzing the Risks of Deceptive Internationalized Domain Names

    Daiki CHIBA  Ayako AKIYAMA HASEGAWA  Takashi KOIDE  Yuta SAWABE  Shigeki GOTO  Mitsuaki AKIYAMA  

     
    PAPER-Network and System Security

      Pubricized:
    2020/03/19
      Vol:
    E103-D No:7
      Page(s):
    1493-1511

    Internationalized domain names (IDNs) are abused to create domain names that are visually similar to those of legitimate/popular brands. In this work, we systematize such domain names, which we call deceptive IDNs, and analyze the risks associated with them. In particular, we propose a new system called DomainScouter to detect various deceptive IDNs and calculate a deceptive IDN score, a new metric indicating the number of users that are likely to be misled by a deceptive IDN. We perform a comprehensive measurement study on the identified deceptive IDNs using over 4.4 million registered IDNs under 570 top-level domains (TLDs). The measurement results demonstrate that there are many previously unexplored deceptive IDNs targeting non-English brands or combining other domain squatting methods. Furthermore, we conduct online surveys to examine and highlight vulnerabilities in user perceptions when encountering such IDNs. Finally, we discuss the practical countermeasures that stakeholders can take against deceptive IDNs.

  • A 10.4-Gs/s High-Resolution Wideband Radar Sampling System Based on TIADC Technique

    Jingyu LI  Dandan XIAO  Yue ZHANG  

     
    LETTER-Computer System

      Pubricized:
    2020/04/20
      Vol:
    E103-D No:7
      Page(s):
    1765-1768

    A high-speed high-resolution sampling system is the crucial part in wideband radar receivers. A 10.4-GS/s 12-bit wideband sampling system based on TIADC technique is designed in this letter. The acquisition function is implemented on a VPX platform. The storage function is implemented on a standard 19-inch rack server. The sampled data is transmitted at high speed through optical fibers between them. A mixed calibration method based on perfect reconstruction is adopted to compensate channel mismatches of wideband TIADC system. For sinusoidal signals from 100MHz to 5000MHz, more than 46-dB SNDR and 56-dB SFDR can be obtained in this sampling system. This letter provides a high-speed and high-resolution acquisition scheme for direct intermediate frequency sampling wideband digital receivers.

  • Initial Assessment of LEO-Augmented GPS RTK in Signal-Degraded Environment

    Weisheng HU  Huiling HOU  Zhuochen XIE  Xuwen LIANG  Xiaohe HE  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/04/10
      Vol:
    E103-A No:7
      Page(s):
    942-946

    We simulate some scenarios that 2/3 LEO satellites enhance 3/4/5 GPS satellites, to assess LEO-augmented GPS RTK positioning in signal-degraded environment. The effects of LEO-augmented GPS RTK in terms of reliability, availability and accuracy are presented, and the DIA algorithm is applied to deal with the poor data quality.

  • Magic Line: An Integrated Method for Fast Parts Counting and Orientation Recognition Using Industrial Vision Systems

    Qiaochu ZHAO  Ittetsu TANIGUCHI  Makoto NAKAMURA  Takao ONOYE  

     
    PAPER-Vision

      Vol:
    E103-A No:7
      Page(s):
    928-936

    Vision systems are widely adopted in industrial fields for monitoring and automation. As a typical example, industrial vision systems are extensively implemented in vibrator parts feeder to ensure orientations of parts for assembling are aligned and disqualified parts are eliminated. An efficient parts orientation recognition and counting method is thus critical to adopt. In this paper, an integrated method for fast parts counting and orientation recognition using industrial vision systems is proposed. Original 2D spatial image signal of parts is decomposed to 1D signal with its temporal variance, thus efficient recognition and counting is achievable, feeding speed of each parts is further leveraged to elaborate counting in an adaptive way. Experiments on parts of different types are conducted, the experimental results revealed that our proposed method is both more efficient and accurate compared to other relevant methods.

  • Improvement of Luminance Isotropy for Convolutional Neural Networks-Based Image Super-Resolution

    Kazuya URAZOE  Nobutaka KUROKI  Yu KATO  Shinya OHTANI  Tetsuya HIROSE  Masahiro NUMA  

     
    LETTER-Image

      Vol:
    E103-A No:7
      Page(s):
    955-958

    Convolutional neural network (CNN)-based image super-resolutions are widely used as a high-quality image-enhancement technique. However, in general, they show little to no luminance isotropy. Thus, we propose two methods, “Luminance Inversion Training (LIT)” and “Luminance Inversion Averaging (LIA),” to improve the luminance isotropy of CNN-based image super-resolutions. Experimental results of 2× image magnification show that the average peak signal-to-noise ratio (PSNR) using Luminance Inversion Averaging is about 0.15-0.20dB higher than that for the conventional super-resolution.

  • Participating-Domain Segmentation Based Server Selection Scheme for Real-Time Interactive Communication Open Access

    Akio KAWABATA  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2020/01/17
      Vol:
    E103-B No:7
      Page(s):
    736-747

    This paper proposes an efficient server selection scheme in successive participation scenario with participating-domain segmentation. The scheme is utilized by distributed processing systems for real-time interactive communication to suppress the communication latency of a wide-area network. In the proposed scheme, users participate for server selection one after another. The proposed scheme determines a recommended server, and a new user selects the recommended server first. Before each user participates, the recommended servers are determined assuming that users exist in the considered regions. A recommended server is determined for each divided region to minimize the latency. The new user selects the recommended available server, where the user is located. We formulate an integer linear programming problem to determine the recommended servers. Numerical results indicate that, at the cost additional computation, the proposed scheme offers smaller latency than the conventional scheme. We investigate different policies to divide the users' participation for the recommended server finding process in the proposed scheme.

  • Clustering for Interference Alignment with Cache-Enabled Base Stations under Limited Backhaul Links

    Junyao RAN  Youhua FU  Hairong WANG  Chen LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/12/25
      Vol:
    E103-B No:7
      Page(s):
    796-803

    We propose to use clustered interference alignment for the situation where the backhaul link capacity is limited and the base station is cache-enabled given MIMO interference channels, when the number of Tx-Rx pairs exceeds the feasibility constraint of interference alignment. We optimize clustering with the soft cluster size constraint algorithm by adding a cluster size balancing process. In addition, the CSI overhead is quantified as a system performance indicator along with the average throughput. Simulation results show that cluster size balancing algorithm generates clusters that are more balanced as well as attaining higher long-term throughput than the soft cluster size constraint algorithm. The long-term throughput is further improved under high SNR by reallocating the capacity of the backhaul links based on the clustering results.

  • Instruction Filters for Mitigating Attacks on Instruction Emulation in Hypervisors

    Kenta ISHIGURO  Kenji KONO  

     
    PAPER-Dependable Computing

      Pubricized:
    2020/04/06
      Vol:
    E103-D No:7
      Page(s):
    1660-1671

    Vulnerabilities in hypervisors are crucial in multi-tenant clouds and attractive for attackers because a vulnerability in the hypervisor can undermine all the virtual machine (VM) security. This paper focuses on vulnerabilities in instruction emulators inside hypervisors. Vulnerabilities in instruction emulators are not rare; CVE-2017-2583, CVE-2016-9756, CVE-2015-0239, CVE-2014-3647, to name a few. For backward compatibility with legacy x86 CPUs, conventional hypervisors emulate arbitrary instructions at any time if requested. This design leads to a large attack surface, making it hard to get rid of vulnerabilities in the emulator.This paper proposes FWinst that narrows the attack surface against vulnerabilities in the emulator. The key insight behind FWinst is that the emulator should emulate only a small subset of instructions, depending on the underlying CPU micro-architecture and the hypervisor configuration. FWinst recognizes emulation contexts in which the instruction emulator is invoked, and identifies a legitimate subset of instructions that are allowed to be emulated in the current context. By filtering out illegitimate instructions, FWinst narrows the attack surface. In particular, FWinst is effective on recent x86 micro-architectures because the legitimate subset becomes very small. Our experimental results demonstrate FWinst prevents existing vulnerabilities in the emulator from being exploited on Westmere and Skylake micro-architectures, and the runtime overhead is negligible.

  • Identification of Kernel Memory Corruption Using Kernel Memory Secret Observation Mechanism

    Hiroki KUZUNO  Toshihiro YAMAUCHI  

     
    PAPER-Network and System Security

      Pubricized:
    2020/03/04
      Vol:
    E103-D No:7
      Page(s):
    1462-1475

    Countermeasures against attacks targeting an operating system are highly effective in preventing security compromises caused by kernel vulnerability. An adversary uses such attacks to overwrite credential information, thereby overcoming security features through arbitrary program execution. CPU features such as Supervisor Mode Access Prevention, Supervisor Mode Execution Prevention and the No eXecute bit facilitate access permission control and data execution in virtual memory. Additionally, Linux reduces actual attacks through kernel vulnerability affects via several protection methods including Kernel Address Space Layout Randomization, Control Flow Integrity, and Kernel Page Table Isolation. Although the combination of these methods can mitigate attacks as kernel vulnerability relies on the interaction between the user and the kernel modes, kernel virtual memory corruption can still occur (e.g., the eBPF vulnerability allows malicious memory overwriting only in the kernel mode). We present the Kernel Memory Observer (KMO), which has a secret observation mechanism to monitor kernel virtual memory. KMO is an alternative design for virtual memory can detect illegal data manipulation/writing in the kernel virtual memory. KMO determines kernel virtual memory corruption, inspects system call arguments, and forcibly unmaps the direct mapping area. An evaluation of KMO reveals that it can detect kernel virtual memory corruption that contains the defeating security feature through actual kernel vulnerabilities. In addition, the results indicate that the system call overhead latency ranges from 0.002 µs to 8.246 µs, and the web application benchmark ranges from 39.70 µs to 390.52 µs for each HTTP access, whereas KMO reduces these overheads by using tag-based Translation Lookaside Buffers.

  • Online-Efficient Interval Test via Secure Empty-Set Check

    Katsunari SHISHIDO  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/05/14
      Vol:
    E103-D No:7
      Page(s):
    1598-1607

    In the age of information and communications technology (ICT), not only collecting data but also using such data is provided in various services. It is necessary to ensure data privacy in such services while providing efficient computation and communication complexity. In this paper, we propose the first interval test designed according to the notion of online and offline phases by executing our new empty-set check. Our protocol is proved to ensure both server and client privacy. Furthermore, neither the computational complexity of a client in the online phase nor the communicational complexity from a server to a client depends on the size of the set. As a result, even in a practical situation in which one server receives requests from numerous clients, the waiting time for a client to obtain the result of an interval test can be minimized.

  • A Multilayer Steganography Method with High Embedding Efficiency for Palette Images

    Han-Yan WU  Ling-Hwei CHEN  Yu-Tai CHING  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/04/07
      Vol:
    E103-D No:7
      Page(s):
    1608-1617

    Embedding efficiency is an important issue in steganography methods. Matrix embedding (1, n, h) steganography was proposed by Crandall to achieve high embedding efficiency for palette images. This paper proposes a steganography method based on multilayer matrix embedding for palette images. First, a parity assignment is provided to increase the image quality. Then, a multilayer matrix embedding (k, 1, n, h) is presented to achieve high embedding efficiency and capacity. Without modifying the color palette, hk secret bits can be embedded into n pixels by changing at most k pixels. Under the same capacity, the embedding efficiency of the proposed method is compared with that of pixel-based steganography methods. The comparison indicates that the proposed method has higher embedding efficiency than pixel-based steganography methods. The experimental results also suggest that the proposed method provides higher image quality than some existing methods under the same embedding efficiency and capacity.

  • Throughput Analysis of Dynamic Multi-Hop Shortcut Communications for a Simple Model

    Satoshi YAMAZAKI  Ryuji ASAKURA  Kouji OHUCHI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:7
      Page(s):
    951-954

    Previously, dynamic multi-hop shortcut (DMHS) communications to improve packet delivery rate and reduce end-to-end transmission delay was proposed. In this letter, we theoretically derive the end-to-end throughput of DMHS considering the retransmission at each node for a simple network model without considering collision. Moreover, we show the validity of the derived expression using computer simulations, and we clarify the effect of various parameters on the throughput using DMHS.

  • Sparsity Reduction Technique Using Grouping Method for Matrix Factorization in Differentially Private Recommendation Systems

    Taewhan KIM  Kangsoo JUNG  Seog PARK  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/04/01
      Vol:
    E103-D No:7
      Page(s):
    1683-1692

    Web service users are overwhelmed by the amount of information presented to them and have difficulties in finding the information that they need. Therefore, a recommendation system that predicts users' taste is an essential factor for the success of businesses. However, recommendation systems require users' personal information and can thus lead to serious privacy violations. To solve this problem, many research has been conducted about protecting personal information in recommendation systems and implementing differential privacy, a privacy protection technique that inserts noise into the original data. However, previous studies did not examine the following factors in applying differential privacy to recommendation systems. First, they did not consider the sparsity of user rating information. The total number of items is much more than the number of user-rated items. Therefore, a rating matrix created for users and items will be very sparse. This characteristic renders the identification of user patterns in rating matrixes difficult. Therefore, the sparsity issue should be considered in the application of differential privacy to recommendation systems. Second, previous studies focused on protecting user rating information but did not aim to protect the lists of user-rated items. Recommendation systems should protect these item lists because they also disclose user preferences. In this study, we propose a differentially private recommendation scheme that bases on a grouping method to solve the sparsity issue and to protect user-rated item lists and user rating information. The proposed technique shows better performance and privacy protection on actual movie rating data in comparison with an existing technique.

  • A Flexible Overloaded MIMO Receiver with Adaptive Selection of Extended Rotation Matrices

    Satoshi DENNO  Akihiro KITAMOTO  Ryosuke SAWADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/01/17
      Vol:
    E103-B No:7
      Page(s):
    787-795

    This paper proposes a novel flexible receiver with virtual channels for overloaded multiple-input multiple-output (MIMO) channels. The receiver applies extended rotation matrices proposed in the paper for the flexibility. In addition, adaptive selection of the extended rotation matrices is proposed for further performance improvement. We propose two techniques to reduce the computational complexity of the adaptive selection. As a result, the proposed receiver gives us an option to reduce the complexity with a slight decrease in the transmission performance by changing receiver configuration parameters. A computer simulation reveals that the adaptive selection attains a gain of about 3dB at the BER of 10-3.

1641-1660hit(20498hit)