The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BAN(1638hit)

801-820hit(1638hit)

  • Wideband Microstrip Bandpass Filter Based on EBG Concept

    Himal C. JAYATILAKA  David M. KLYMYSHYN  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2212-2217

    A periodically loaded ultra wideband (UWB) bandpass filter based on the electromagnetic band-gap (EBG) concept is presented. Compact wideband filters with steep transition bands can be designed easily using this novel methodology. Unit cells in the EBG circuit model are realized by capacitive and inductive parallel loading of a transmission line. These unit cells are cascaded to realize bandpass filters whose bandwidth depends on the reactive loading of unit cells. The number of unit cells determines the steepness of the band edges of the filter. The main advantage lies in the fact that the size of unit cells can be small because electrical length of transmission line segments in unit cells can be chosen arbitrarily, hence the final filter structure becomes small in size. A microstrip filter with 60% bandwidth is designed and the physical size is compared with a conventional wideband bandpass filter designed with quarter wavelength admittance inverters.

  • Wideband NRD Guide and Rectangular Waveguide H-Plane Transition at 60 GHz Band

    Takashi SHIMIZU  Tsukasa YONEYAMA  

     
    LETTER

      Vol:
    E90-C No:12
      Page(s):
    2263-2265

    A wideband NRD guide and rectangular waveguide H-plane transition is proposed to transfer millimeter waves from a dielectric strip to the outer conductor surface of NRD guide through a short length of waveguide made through the conductor plate. As a result, it has a bandwidth about 6.7 GHz of |S11| -15 dB and a low transition loss about 0.35 dB at 60 GHz band.

  • Noise Robust Speaker Identification Using Sub-Band Weighting in Multi-Band Approach

    Sungtak KIM  Mikyong JI  Youngjoo SUH  Hoirin KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E90-D No:12
      Page(s):
    2110-2114

    Recently, many techniques have been proposed to improve speaker identification in noise environments. Among these techniques, we consider the feature recombination technique for the multi-band approach in noise robust speaker identification. The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional feature recombination technique does not provide notable performance improvement compared with the full-band system. Even though the speech is corrupted by the broad-band noise, the degree of the noise corruption on each sub-band is different from each other. In the conventional feature recombination for speaker identification, all sub-band features are used to compute multi-band likelihood score, but this likelihood computation does not use a merit of multi-band approach effectively, even though the sub-band features are extracted independently. Here we propose a new technique of sub-band likelihood computation with sub-band weighting in the feature recombination method. The signal to noise ratio (SNR) is used to compute the sub-band weights. The proposed sub-band-weighted likelihood computation makes a speaker identification system more robust to noise. Experimental results show that the average error reduction rate (ERR) in various noise environments is more than 24% compared with the conventional feature recombination-based speaker identification system.

  • Proposal for Adaptive Bandwidth Allocation Using One-Way Feedback Control for MPLS Networks

    Teruaki YOKOYAMA  Katsuyoshi IIDA  Hiroyuki KOGA  Suguru YAMAGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E90-B No:12
      Page(s):
    3530-3540

    In this research, we focused on fair bandwidth allocation on the Internet. The Internet provides communication services based on exchanged packets. The bandwidth available for each customer is often fluctuated. Fair bandwidth allocation is an important issue for ISPs to gain customer satisfaction. Static bandwidth allocation allows an exclusive bandwidth for specific traffic. Although it gives communications a QoS guarantee, it requires muany bandwidth resources as known as over-provisioning. In contrast with static control, dynamic control allocates bandwidth resources dynamically. It therefore utilizes bandwidth use more effectively. However, it needs control overhead in monitoring traffic and estimating the optimum allocation. The Transmission Control Protocol, or TCP is the dominant protocol on the Internet. It is also equipped with a traffic-rate-control mechanism. An adaptive bandwidth-allocation mechanism must control traffic that is under TCP control. Rapid feedback makes it possible to gain an advantage over TCP control. In this paper, we propose an Adaptive Bandwidth Allocation (ABA) mechanism as a feedback system for MPLS. Our proposal allows traffic to be regulated adaptively as its own weight value which can be assigned by administrators. The feedback bandwidth allocation in the previous work needs round-trip control delay in collecting network status along the communication path. We call this "round-trip feedback control." Our proposal, called "one-way feedback control," collects network status in half the time of roundtrip delay. We compare the performance of our one-way feedback-based mechanism and traditional round-trip feedback control under a simulation environment. We demonstrate the advantages of our rapid feedback control has using experimental results.

  • Wideband 3/4 Elliptical Ring Patch for Millimeter-Wave Communication

    Wei HE  Ronghong JIN  Junping GENG  Guomin YANG  

    This letter was withdrawn by the authors. The withdrawal procedure has been completed on October 24, 2008.
     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:12
      Page(s):
    3742-3744

    In this study, a wideband 3/4 elliptical ring patch operating millimeter wave band is proposed. Using this structure, the patch antenna is designed for circular polarization and wide-band operation at about 32.1-40 GHz for millimeter wave communication. Simulated and measured results for main parameters such as voltage standing wave ratio (VSWR), impedance bandwidth, axial ratio, radiation patterns and gains are also discussed. The study shows that modeling of such antennas, with simplicity in designing and feeding, can well meet the requirements of millimeter-wave wireless communication systems.

  • Stepped-Impedance Hairpin Resonators with Asymmetric Capacitively Loaded Coupled Lines for Improved Stopband Characteristics

    Apirada NAMSANG  Thammarat MAJAENG  Jaruek JANTREE  Sarawuth CHAIMOOL  Prayoot AKKARAEKTHALIN  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2185-2191

    New microstrip bandpass filters with extended stopband bandwidths are proposed by using new asymmetric stepped-impedance hairpin resonators (ASIHRs). The size of the proposed resonators has been reduced around 16%, comparing with the conventional stepped-impedance hairpin resonators (SIHRs) structure. The first bandpass filter is a combination of differ resonators with the same fundamental frequency but differ in harmonic frequencies, resulting in improved suppression spurious responses in stopbands. Furthermore, another bandpass filter uses the ASIHRs periodically loaded on a microstrip line to improve stopband characteristics. The proposed filters not only have compact size of resonators, but also provide improved upper stopband characteristics. The proposed filters provide 20 dB rejection levels in the stopband up to 6f0. The measured filters responses agree very well with the simulated expectations.

  • Notch-Band Implemented UWB Bandpass Filter

    Daisuke KURITA  Keren LI  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2226-2231

    In this paper, a notch-band implemented UWB bandpass filter was proposed. The filter was realized by integrating a full ultra-wideband bandpass filter using broadside coupling structure with a bandstop filter using in-line open stub. The in-line open stub was installed in the removed area in the broadside coupled microstrip conductors, which demonstrated a narrow notch-band performance. The proposed filters were designed based on the electromagnetic simulation and fabricated using a wet etching system. Parameter study of length dependence of the notch-band was carried out. The first resonant frequency of the in-line stub appears when the length is approximately equal to one quarter of the guided wavelength. Based on this fact, the notch-band can be adjusted to almost any specified band in the UWB passband. A three-section notch-band implemented filter demonstrated good characteristics: its full frequency bandwidth form 2.8 GHz to 10.2 GHz, good insertion loss of 0.6 dB and 1.0 dB at the centers of the first and second bands respectively, and flat and small group delay of less than 0.40 ns over main pass band, and a large attenuation stopband about 55 dB at 5.63 GHz. A lowpass filter was also introduced in order to improve the out-band performance, by which the measured results show an excellent attenuation better than 30 dB from 10.4 GHz to 17.8 GHz.

  • Printed Circuit Board Bandpass Filters with Octave Bandwidth and Very Wide Upper Stopband

    Hui-Chun CHEN  Chi-Yang CHANG  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2205-2211

    Bandpass filters with broad bandwidth (up to 70%), very wide upper stopband (nearest spurious passband occurs up to five times of passband center frequency (f0)), good stopband rejection performance (better than -30-40 dB in the whole stopband region), and matching with the conventional low cost printed circuit board process with low dielectric constant substrates are proposed in this paper. The proposed filters are designed using parallel-coupled vertically installed planar stepped-impedance resonators (VIPSIRs), which adopt the inherent nature of very tight coupling of VIP coupled line and extremely high impedance of VIP line. The extremely tightly coupled line enables the proposed filters having very wide passband and the extremely high impedance of VIP line leads to extremely large low-to-high impedance ratio that pushes the nearest spurious passband up to 5f0. Both VIP coupled line and VIP high impedance line are analyzed and characterized by the design charts. The design procedures based on the design charts are verified by several experimental examples. The measured results agree very well with the simulated ones.

  • Miniature Microstrip Bandpass Filters Based on Capacitive Loaded Coupled-Lines and Lumped-Element K-Inverters

    Yo-Shen LIN  Chien-Chun CHENG  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2218-2225

    This study presents a class of miniature parallel-coupled bandpass filters with good selectivity and stopband rejection. Capacitive terminations are introduced to the conventional anti-parallel coupled-lines, and lumped-element K-inverters are employed, to achieve both size reduction and spurious suppression. Additionally, the capacitive cross-coupling effect can be introduced to obtain three transmission zeros to enhance the selectivity. Suitable equivalent-circuit models, along with design formulae, are also established. Specifically, via design examples, this work demonstrates the feasibility of proposed filter structures in microstrip configuration. Compared to the conventional parallel-coupled filters, the proposed filters exhibit over 60% size reduction, improved selectivity, and wider stopbands up to four times the center frequency.

  • Service Interval Optimization with Delay Bound Guarantee for HCCA in IEEE 802.11e WLANs

    Augusto FORONDA  Yuhi HIGUCHI  Chikara OHTA  Masahiko YOSHIMOTO  Yoji OKADA  

     
    PAPER-Network

      Vol:
    E90-B No:11
      Page(s):
    3158-3169

    IEEE 802.11e Medium Access Control (MAC) is a supplement to the IEEE 802.11 Wireless Network (WLAN) standard to support Quality of Service (QoS). The 802.11e MAC defines a new coordination function, namely Hybrid Coordination Function (HCF), which takes the QoS requirements of flows into account and allocates Transmission Opportunity (TXOP) to stations. On the basis of mean sending rate, delay of Variable Bit Rate (VBR) traffic cannot be bounded with the reference HCF scheduling algorithm proposed in this supplement. In this paper, we propose a new Connection Admission Control (CAC) and a scheduling algorithm that utilize the token bucket and a modified Latency-Rate (LR) scheduling algorithm to guarantee a bounded delay for HCF Controlled Channel Access (HCCA). The new Service Interval (SI) is calculated to optimize the number of stations accommodated and takes into account delay bound and token bucket parameters. We show that it is possible to obtain worst-case performance guarantees on delay. First, we analyze the behavior of the new scheduler with a loss free wireless channel model and after this, with a burst loss model and we explain how it is possible to extend this scheduler for a multi-rate scheme. Properties of the proposal are investigated both theoretically and using ns-2 simulations. We present a set of simulations with both Constant Bit Rate (CBR) and VBR flows and performance comparisons with HCF scheduling algorithm. The results show that the delay upper bound can be achieved for a large range of networks load with bandwidth optimization.

  • Multilink System with Available Bandwidth Estimation in Nomadic Network Environment

    Takaaki MORIYA  Hiroyuki OHNISHI  Takeshi OGAWA  Tadashi ITO  Miki HIRANO  

     
    PAPER-Network

      Vol:
    E90-B No:11
      Page(s):
    3133-3145

    With the spread of broadband and wireless Internet access, there is a growing need for a nomadic network environment that enables the use of network services anywhere, via various access media. In a nomadic network environment, however, the connectivity is decreased because users move among different access networks, and the bandwidth is narrow and fluctuating, especially for radio propagation in wireless networks. To solve these problems, we propose a multilink system with three key functions: IPinIP tunneling, dynamic distribution of packets, and reordering of distributed packets. In particular, our distribution function includes a novel algorithm based on available bandwidth estimation. A prototype of our system was evaluated through experiments using real wireless environments and its efficiency is discussed.

  • A Novel NBI Suppression Scheme in UWB Ranging Systems

    Weihua ZHANG  Hanbing SHEN  Zhiquan BAI  Kyung-sup KWAK  

     
    LETTER-UWB

      Vol:
    E90-A No:11
      Page(s):
    2439-2441

    Due to the ultra low power spectral desity of the ultra-wide band (UWB), narrow band interference (NBI) with high-level emission power will degrade the accuracy of UWB ranging system. We propose a novel waveform to suppress the accuracy degradation by NBI with a given frequency. In addition, we compare the ranging error ratio (RER) of the proposed scheme with the traditional one with Gaussian monocycle in this letter.

  • OFDM Interference Suppression for DS/SS Systems Using Complex FIR Filter

    Yuki SHIMIZU  Yukitoshi SANADA  

     
    PAPER-OFDM/CDMA

      Vol:
    E90-A No:11
      Page(s):
    2388-2394

    In this paper, the performance of narrow band interference (NBI) rejection scheme for direct sequence spread spectrum (DS/SS) is analyzed. A 2-tapped complex FIR filter is used for filtering a chip code to suppress NBI. In this system, the spectrum of transmitted signal has a null at an arbitrary frequency. By choosing filter coefficients, the authors place this null at NBI center frequency to mitigate the effect of NBI. In this paper, an OFDM signal is considered as NBI. The performance of this scheme is theoretically analyzed by introducing Queueing model, and validated via simulation.

  • Stacked Rectangular Microstrip Antenna with a Shorting Plate for Dual Band (VICS/ETC) Operation in ITS

    Takafumi FUJIMOTO  Kazumasa TANAKA  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:11
      Page(s):
    3307-3310

    A stacked rectangular microstrip antenna with a shorting plate is proposed as a car antenna for dual band (VICS and ETC) operation in the ITS. The proposed antenna has the proper radiation patterns for the VICS and ETC. The antenna is small in size and effective in dual band operation.

  • A Novel Modulation with Parallel Combinatory and High Compaction Multi-Carrier Modulation

    Yafei HOU  Masanori HAMAMURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E90-A No:11
      Page(s):
    2556-2567

    In this paper, we propose a new modulation named parallel combinatory/high compaction multi-carrier modulation (PC/HC-MCM) using the techniques of parallel combinatory orthogonal frequency division multiplexing (PC-OFDM) and high compaction multi-carrier modulation (HC-MCM). Two types of PC/HC-MCM systems, which are named as modulated PC/HC-MCM system and (unmodulated) PC/HC-MCM system, can be designed. The modulated PC/HC-MCM system achieves better bit-error rate (BER) performance than that of HC-MCM system with equal bandwidth efficiency (BWE). The PC/HC-MCM system can obtain the better peak-to-average power ratio (PAPR) characteristics by selecting appropriate constellation for each subcarrier. On the other hand, since PC/HC-MCM can divide the PC-OFDM symbol duration into multiple time-slots, the advantages of frequency hopping (FH) can be applied in the PC/HC-MCM system. Therefore, we also combine the PC/HC-MCM and frequency hopping multiple access (FHMA) to propose a novel multiple access (MA) system. It can simultaneously transmit multiple users' data within one symbol duration of PC-OFDM.

  • Evaluation of Information Leakage from PC Displays Using Spectrum Analyzers

    Toshihide TOSAKA  Yukio YAMANAKA  Kaori FUKUNAGA  Ryo ISHIKAWA  Mitsuo HATTORI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:11
      Page(s):
    3315-3318

    To evaluate whether electromagnetic disturbances that leak from PC displays contain information or not, we need to reconstruct the information from the measured disturbance. This requires a special receiver, and not all test houses have a special receiver. In this paper, we propose performing the evaluation with the spectrum analyzers commonly used for EMI measurement. First, we select a spectrum that containing the frequency component of the vertical sync signal using a spectrum analyzer (SA1). Then, we measure the video output of SA1 using another spectrum analyzer (SA2) and evaluate the disturbance from the frequency component of the horizontal sync signal.

  • Autocorrelation Function of Return Waveforms in High Precision Spaceborne Radar Altimeters Employing Chirp Transmit Pulses

    Min-Ho KA  Aleksandr I. BASKAKOV  Anatoliy A. KONONOV  

     
    PAPER-Sensing

      Vol:
    E90-B No:11
      Page(s):
    3237-3245

    This paper analyses the autocorrelation function of return waveforms in high precision radar altimeters employing chirp-pulse transmit signal under the condition of near-nadir deviations of the antenna boresight axis. It is shown that in case of ultra wideband transmit signals providing very high time resolution the correlation function can be approximated by a product of two separate functions of time.

  • Ultra-Wideband Time-of-Arrival and Angle-of-Arrival Estimation Using a Signal Model Based on Measurements

    Naohiko IWAKIRI  Takehiko KOBAYASHI  

     
    PAPER-UWB

      Vol:
    E90-A No:11
      Page(s):
    2345-2353

    This paper presents an ultra wideband (UWB) channel sounding scheme with a technique for estimating time of arrival (TOA) and angle of arrival (AOA) using measurement signals. Since the power spectrum over the UWB bandwidth can be measured in advance, we propose a signal model using the measurement power spectrum to design the proper UWB signals model. This signal model is more similar to measurement signals than the flat spectrum model which is an ideal model. If more than three waves impinge on a receiver, we must determine the proper grouping of the elements of TOA vector and AOA vector. It is difficult to determine the grouping using only measurement signals because of many degradation factors. We also propose pairing the elements of TOA vector and that of AOA vector using correlation method based on measurement signals and the proposed signal model. This technique is available for more than the case of three paths if pairing the estimated TOAs and AOAs of measurement signals is not accurately determined. We evaluated the proposed techniques for a vector network analyzer (VNA) with a three-dimensional virtual antenna array.

  • Cascaded Lithium Niobate Mach-Zehnder Optical SSB Modulators for Multi-Carrier Signals

    Koji KIKUSHIMA  Toshihito FUJIWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E90-C No:10
      Page(s):
    2012-2021

    This paper clarifies the sideband suppression ratio (SSR) value needed for multi-carrier signal modulation in an optical single sideband (SSB) modulator. An SSR value of about 25 dB is found to be sufficient for broadcast satellite (BS) multi-carrier signal modulation. For FM converted CATV signal modulation, an SSR value of about 10 dB is sufficient. In addition, the properties of cascaded lithium niobate Mach-Zehndar (LN MZ) optical SSB modulators are clarified to be better than those of the conventional single LN MZ optical SSB modulator with nearly the same SSR value of 27 dB.

  • New Method for Evaluating Height Gain at Subscriber Station for Wireless Access Systems in Microwave Band

    Naoki KITA  Wataru YAMADA  Akio SATO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:10
      Page(s):
    2903-2914

    This paper presents a model for the variation in height of the subscriber station (SS) antenna with respect to the path loss for microwave-band wireless access systems. The propagation mechanism that causes the dependency of the height variation characteristics of the received level at an SS on the SS location and operating frequency is clarified in terms of geometrical optics (GO) using the uniform geometrical theory of diffraction (UTD). The height variation characteristics strongly depend on whether or not regular reflected waves that have a higher level than that of the diffracted wave arrive at the SS. A representation of the model is shown. The model is validated using measured data at 2.2, 5.2, and 25.15 GHz and the validity of the model is shown. This model is useful in the radio zone design of microwave-band broadband wireless access (BWA) systems operating in a non-line-of-sight environment, and in estimating the height gain at a mobile station antenna for mobile communications.

801-820hit(1638hit)