The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BER(1216hit)

681-700hit(1216hit)

  • Channel Estimation and Signal Detection for Space Division Multiplexing in a MIMO-OFDM System

    Yasutaka OGAWA  Keisuke NISHIO  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    10-18

    We consider space division multiplexing in a MIMO-OFDM system for high data rate transmission. Channel estimation is very important for suppressing interference and demultiplexing signals. In a wireless LAN system such as IEEE 802.11a, only a few training symbols are inserted in each subcarrier. First, we propose a channel estimation method for a MIMO-OFDM system with two training symbols per subcarrier. The basic idea is to estimate the time-domain channel responses between the transmit and receive antennas. The array response vectors for each subcarrier are calculated by applying a fast Fourier transform to them. We then can obtain the adaptive weights to cancel the interference. We show that employing training symbols having a lower condition number of the matrix used for the channel estimation improves the estimation accuracy. Furthermore, we show the bit error rate for several signal detection schemes using the above estimated channel. It is shown that an ordered successive detection based on an MMSE criterion has excellent performance, that is, it can achieve higher-speed transmissions with a lower transmit power.

  • The Distribution of the Spectrum for the Discrete Fourier Transform Test Included in SP800-22

    Kenji HAMANO  

     
    PAPER-Symmetric Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    67-73

    In this paper, the problem in the distribution of the test statistic of the Discrete Fourier Transform (DFT) test included in SP800-22 released by the National Institute of Standards and Technology (NIST), which causes a very high rate of rejection compared with the significance level, is considered on the basis of the distribution of the spectrum. The statistic of the DFT test, which was supposed to follow the standard normal distribution N(0, 1) according to the central limit theorem, seems to follow the normal distribution N(0.691, 0.5) approximately. The author derived the distribution function of the spectrum, and changed the threshold value from the default value of to the value of 1.7308 , where n is the length of a random number sequence. By this modification, the test statistic becomes to follow the normal distribution N(0, 0.5) approximately. The disagreement between this variance (= 0.5) and that of the standard normal distribution (= 1) can be considered to originate in the dependence of the spectrum. The evidences of the dependence are shown.

  • A Strength Evaluation of a Pseudorandom Number Generator MUGI against Linear Cryptanalysis

    Hiroki SEKINE  Tetsuro NOSAKA  Yasuo HATANO  Masaki TAKEDA  Toshinobu KANEKO  

     
    PAPER-Symmetric Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    16-24

    This paper reports the strength of a pseudorandom number generator MUGI, which was published as a stream cipher by Hitachi, Ltd. in 2001, against linear cryptanalysis. MUGI is one of the recommended ciphers of CRYPTREC, which is a project for the e-Government in Japan. It has two internal states called state and buffer, which are updated by a linear function λ and a non-linear function ρ. The non-linear function ρ and the linear function λ have already been analyzed, independently. In this paper, whole MUGI is analyzed by truncated linear cryptanalysis. The analysis of λ function is based on the state variables method. The result is combined to the result of the analysis of ρ function to make a trellis diagram. Viterbi search is conducted on the diagram to find the best possible linear path under 64-bit truncated linear cryptanalysis. As the result, the upper bound of the maximum linear characteristic probability is estimated as less than 2-138. Therefore, MUGI is secure against linear cryptanalysis.

  • Multi-Stage Fiber Delay Line Buffer in Photonic Packet Switch for Asynchronously Arriving Variable-Length Packets

    Nobuo OGASHIWA  Hiroaki HARAI  Naoya WADA  Fumito KUBOTA  Yoichi SHINODA  

     
    PAPER-Internet

      Vol:
    E88-B No:1
      Page(s):
    258-265

    We study photonic packet switches to support asynchronously arriving variable-length packets. A scheduler for contention resolution is operated in electrical domain even when data street of the buffer is provided in optical domain. In this scheme, the scheduler may be a bottleneck. To compensate the gap of high-speed optical transmission and slow-speed electronic processing, we propose a multi-stage fiber delay line (FDL) buffer architecture that forms a tree structure in which each node has a block of FDLs and a scheduler. This is especially useful for output-buffer switches in which scheduling complexity is proportional to the number of ports of the packet switch. Through a newly-developed approximate analytical method, we show the optimum unit length of the fiber delay lines to decrease packet loss probability. We also show the sufficient number of FDLs in the two-stage buffer.

  • Adaptive Thresholding for Degraded Call Number Images

    Hu XIAOFENG  Ye QINGTAI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E88-D No:1
      Page(s):
    162-163

    We present a method for binarization of degraded call number images. Based on the texture feature of the character stroke, the algorithm initially detects the character pixels to determine the size of the local area and compute the logical thresholding level. Experimental results prove the effectiveness of the method.

  • Experiment and Simulation of Step-Index Optical Fiber Temperature Sensor Using Two Modes

    Manabu YOSHIKAWA  Shouhei MASAGO  

     
    LETTER-Optoelectronics

      Vol:
    E87-C No:12
      Page(s):
    2193-2194

    Phase performance in a temperature sensor using a conventional single-mode step-index fiber is studied. Two modes are excited in a so called single-mode fiber when the wavelength of a laser source is shorter than the one suggested by the specification of a fiber. The phase shift due to the temperature change of a step-index fiber is analyzed. The intensity fluctuation by the interference of two modes is observed in the experiment and estimated in the computer simulation.

  • Performance Analysis of MRC 2D-RAKE Receivers in Correlated Nakagami-m Fading

    Kaizhi HUANG  Jing WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:12
      Page(s):
    3663-3672

    In this paper, the bit error rate (BER) and the outage probability are presented for a maximal ratio combining (MRC) two-dimensional (2D)-RAKE receiver operating in a correlated frequency-selective Nakagami-m fading environment with multiple access interference. A simple approximated probability distribution function of the signal-to-interference-plus-noise ratio (SINR) is derived for the receiver with multiple correlated antennas and RAKE branches in arbitrary fading environments. The combined effects of spatial and temporal diversity order, average received signal-to-noise ratio, the number of multiple access interference, angular spread, antennae spacing and multi-path Nakagami-m fading environment on the system performance are illustrated. Numerical results indicate that the performance of the 2D-RAKE receiver depends highly on the operating environment and antenna array configuration. The performance can be improved by increasing the spatio-temporal diversity gains and antenna spacing.

  • Broadband Wireless Signal Transmission Using Radio-over-Fiber Links

    Ajung KIM  Young Hoon JU  Young Soo KIM  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E87-B No:12
      Page(s):
    3774-3776

    We have demonstrated radio-over-fiber transmission of wireless signals at millimeter-wave bands. The system incorporated 25 km of an optical intermediate frequency feeder and 60 GHz OFDM signal transmission at 155 Mbps with a BER of less than 10-6 was achieved within the system cell of a radius of 2.6 m under the channel condition of Line-of-Sight.

  • Optical CDMA Spectral-Amplitude Codecs Capable of Reducing Multiple-Access and Optical Beat Interferences

    Jen-Fa HUANG  Yao-Tang CHANG  Song-Ming LIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E87-B No:11
      Page(s):
    3195-3202

    Spectral-amplitude coding (SAC) techniques in fiber-Bragg-grating (FBG)-based optical code-division multiple-access (OCDMA) systems were investigated in our previous work. This paper adopts the same network architecture to investigate the simultaneous reductions of multiple-access interference (MAI) and optical beat interference (OBI). The MAI is caused by overlapping wavelengths from undesired network coder/decoders (codecs) while the OBI is induced by interaction of simultaneous chips at adjacent gratings. It is proposed that MAI and OBI reductions may be obtained by use of: 1) a source spectrum that is divided into equal chip spacing; 2) coded FBGs characterized by approximately the same number of "0" and "1" code elements; and 3) spectrally balanced photo-detectors. With quasi-orthogonal Walsh-Hadamard coded FBGs, complementary spectral chips is employed as signal pairs to be recombined and detected in balanced photo-detectors, thus achieving simultaneous suppression of both MAIs and OBIs. Simulation results showed that the proposed OCDMA spectral-amplitude coding scheme achieves significant MAI and OBI reductions.

  • QoS Enhancement for VoIP Using a New FEC Scheme with Backup Channel

    Abbas ASOSHEH  Mohammad SHIKH-BAHAEI  Jonathon A. CHAMBERS  

     
    LETTER-Network

      Vol:
    E87-B No:10
      Page(s):
    3102-3106

    This paper proposes a new FEC scheme using backup channel to send redundant information instead of piggybacking the main packet. This is particularly applicable to the modern IP networks which are distributed all over the world. In this method only one source coder for both the main and the redundant payload is used to reduce the overall computational complexity. The Gilbert loss model (GLM) is employed to verify the improvement of the packet loss probability in this new method compared with that in a single path FEC scheme. It is shown, through simulation results that using our proposed backup channel can considerably improve the packet loss and delay performance of the VoIP networks.

  • Study of Orthogonal SSB Modulation Method

    Gen-ichiro OHTA  Mitsuru UESUGI  Takuro SATO  Hideyoshi TOMINAGA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2676-2683

    This paper proposes a new SSB-QPSK modulation/demodulation method. The present method multiplexes the USB (Upper Side Band) and LSB (Lower Side Band) of a QPSK-modulated SSB (Single Side Band) on the same SSB complex frequency band. The present method thus achieves 2 bit/s/Hz. This method is an orthogonal SSB-QPSK method, because the multiplex signals are orthogonal to each other. The demodulator consists of two SSB demodulators. A simulation result in AWGN conditions, shows that the proposed method has better BER (Bit Error Rate) performance than 16 QAM. The degradation of BER in comparison with QPSK is less than 0.2 dB on Eb/No (bit-energy-to-noise-power ratio). In a fading/Doppler environment, the BER performance of the orthogonal SSB-QPSK is the same as that of QPSK.

  • On the Code Synchronization of PPM/OPPM Fiber-Optic CDMA Systems

    Anh T. PHAM  Hiroyuki YASHIMA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2692-2701

    This paper proposes and theoretically evaluates two different schemes of code acquisition for pulse-position modulation (PPM) and overlapping PPM (OPPM) fiber-optic code-division multiple-access (CDMA) systems, namely threshold-based and demodulator-based code acquisition. Single-dwell detector and serial-search algorithm are employed for both schemes. Theoretical analysis is carried out for shot-noise-limited photon-counting receiver. Discussions upon effects of various parameter settings on the performance of code acquisition for PPM/OPPM fiber-optic CDMA systems, such as index of overlap, PPM/OPPM multiplicity, average photon counts per information nat, and darkcurrents, are presented. It is shown that when the threshold is properly selected, the threshold-based code acquisition system offers better performance, in terms of mean number of training frames, than the demodulator-based one.

  • A Template Matching Method Based on Marker-Controlled Watershed Segmentation

    Yi HU  Tomoharu NAGAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E87-D No:10
      Page(s):
    2389-2398

    This paper presents a new template matching method based on marker-controlled watershed segmentation (TMCWS). It is applied to recognize numbers on special metal plates in production lines where traditional image recognition methods do not work well. TMCWS is a shape based matching method that uses different pattern images and their corresponding marker images as probes to explore a gradient space of an unknown image to determine which pattern best matches a target object in it. Different from other matching algorithms, TMCWS firstly creates a marker image for each pattern, and then takes both the pattern image and its corresponding marker image as a template window and shifts this window across a gradient space pixel by pixel to do a search. At each position, the marker image is used to try to extract the contour of the target object with the help of marker-controlled watershed segmentation, and the pattern image is employed to evaluate the extracted shape in each trial. All of the pattern images and their corresponding marker images are tried and the pattern that best matches the target object is the recognition result. TMCWS contains shape extraction procedures and it is a high-level template matching method. Experiments are performed with this method on nearly 400 images of metal plates and the test results show its effectiveness in recognizing numbers in noisy images.

  • Employing Optical SSB Modulation Technique in a Full-Duplex Radio-on-Fiber Transport System

    Hai-Han LU  Wen-Shing TSAI  Yu-Jie JI  Je-Wei LIAW  Yi-Shiuan LEE  Wan-Lin TSAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3150-3154

    A full-duplex radio-on-fiber (ROF) transport system based on optical single sideband (SSB) modulation, wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques is proposed and demonstrated. A 1.5-dB RF power degradation due to the chromatic dispersion was achieved by employing optical SSB modulation scheme in the system, in which resulting in low bit error rate (BER) and third order intermodulation distortion to carrier ratio (IMD3/C) values. Such a proposed full-duplex ROF transport system is suitable for the long-haul microwave optical link.

  • Performance Analysis of a Polarizer-Based PMD Compensator and Its Applicability to an Installed SMF WDM System

    Michiaki HAYASHI  Hideaki TANAKA  Masatoshi SUZUKI  Shigeyuki AKIBA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E87-B No:10
      Page(s):
    2895-2902

    The operation of a polarization mode dispersion (PMD) compensator using a polarizer and a Faraday rotator-based polarization controller (FRPC) is analyzed in detail, and the compensation performance is experimentally evaluated in 40 Gbit/s operation. The evaluation results show that a wide range of differential group delay over a bit period can almost be completely compensated using the PMD compensator. The characteristics of electrical spectrum-based signal monitoring methods are investigated in detail, and the results shows advantages of a low frequency band monitoring method that produces about double the wider dynamic range than a fundamental repetition frequency monitoring method. The automated PMD compensator using a polarizer and a FRPC driven by the low frequency band monitoring method is experimentally investigated using a terrestrial 40 Gbit/s wavelength division multiplexing system involving 350-km installed single-mode fibers. The PMD compensator produces highly stable signal performance in the field environment for a long term and reduces the standard deviation of the Q-factor distribution.

  • Single Electron Stochastic Neural Network

    Hisanao AKIMA  Saiboku YAMADA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2221-2226

    Single electron devices are ultra low power and extremely small devices, and suitable for implementation of large scale integrated circuits. Artificial neural networks (ANNs), which require a large number of transistors for being to be applied to practical use, is one of the possible applications of single electron devices. In order to simplify a single electron circuit configuration, we apply stochastic logic in which various complex operations can be done with basic logic gates. We design basic subcircuits of a single electron stochastic neural network, and confirm that backgate bias control and a redundant configuration are necessary for a feedback loop configuration by computer simulation based on Monte Carlo method. The proposed single electron circuit is well-suited for hardware implementation of a stochastic neural network because we can save circuit area and power consumption by using a single electron random number generator (RNG) instead of a conventional complementary metal oxide semiconductor (CMOS) RNG.

  • Fiber Path WDM Optical Network with Minimum Cost

    Noriaki KAMIYAMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E87-B No:9
      Page(s):
    2648-2658

    The WDM optical networks currently being deployed are opaque optical networks, in which each link is optically isolated by transponders. To reduce the number of expensive transponders and switching ports, a hierarchical optical architecture consisting of all-optical waveband switching and opaque OEO switching has been proposed. Although this architecture requires fewer transponders and ports, it also requires a large number of wavelength (waveband) multiplexers and demultiplexers. Switching the optical path solely at the fiber level (i.e., by using fiber cross-connects, or FXCs) is desirable as a way to reduce the total node cost. If all the core nodes in an optical network are FXCs, however, the grooming of wavelengths for the optical fibers is only possible at the edge nodes. This leads to poor utilization of wavelength resources when there is only demand for small numbers of wavelengths, and as a result, the link cost increases. This problem can be solved by adding an OEO grooming function to some of the FXCs. In this paper, we propose an algorithm for designing optical cross-connect (OXC) functions on the basis of the FXC, thus minimizing the total network cost.

  • The Impact of Smart Antenna Characteristics on Network Throughput and Channel Model BER: A Review

    Constantine A. BALANIS  Panayiotis IOANNIDES  

     
    INVITED PAPER

      Vol:
    E87-C No:9
      Page(s):
    1469-1476

    Unlike most of the previous work for smart antennas that covered each area individually (antenna-array design, signal processing and communications algorithms and network throughput), this paper may be considered as a review of comprehensive effort on smart antennas that examines and integrates antenna array design, the development of signal processing algorithms (for angle of arrival estimation and adaptive beamforming), strategies for combating fading, and the impact on the network throughput. In particular, this study considers problems dealing with the impact of the antenna design on the network throughput. In addition, fading channels and tradeoffs between diversity combining and adaptive beamforming are examined as well as channel coding to improve the system performance.

  • Evaluation of Intensity Noise in Semiconductor Fabry-Perot Lasers

    Kenji SATO  

     
    PAPER-Components and Devices

      Vol:
    E87-C No:9
      Page(s):
    1510-1516

    Intensity-noise characteristics of stable multi-mode Fabry-Perot semiconductor lasers are analyzed experimentally and theoretically. Mode-partition noise caused by optical filtering and propagation through optical fibers is investigated by evaluating the relative intensity noise and signal-to-noise ratio. The experimental results indicate that the simplified two-mode analysis provides a good approximation. Suppression of the mode-partition noise by nonlinear gain is experimentally confirmed.

  • Statistical Properties of Modulo-2 Added Binary Sequences

    Akio TSUNEDA  Takuro SUGAHARA  Takahiro INOUE  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2267-2273

    Modulo-2 addition (or exclusive-OR) is one of fundamental operations for binary variables. In this paper, we discuss statistical properties of sequences obtained by modulo-2 addition of two binary sequences. Firstly, we theoretically evaluate statistics of sequences obtained by modulo-2 addition of two general binary random variables. Secondly, we consider statistics of modulo-2 added chaotic binary sequences generated by a class of one-dimensional chaotic maps. Furthermore, we consider synthesis of an aperiodic binary sequence and a periodic one by modulo-2 addition with the purpose of generating aperiodic sequences with good statistical properties. We also perform computer experiments about such sequences.

681-700hit(1216hit)