Arata KANEKO Htoo Htoo Sandi KYAW Kunihiro FUJIYOSHI Keiichi KANEKO
In this paper, we propose two algorithms, B-N2N and B-N2S, that solve the node-to-node and node-to-set disjoint paths problems in the bicube, respectively. We prove their correctness and that the time complexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n), respectively, if they are applied in an n-dimensional bicube with n ≥ 5. Also, we prove that the maximum lengths of the paths generated by B-N2N and B-N2S are both n + 2. Furthermore, we have shown that the algorithms can be applied in the locally twisted cube, too, with the same performance.
A 150 GHz fundamental oscillator employing an inter-stage matching network based on a transmission line is presented in this letter. The proposed oscillator consists of a two-stage common-emitter amplifier loop, whose inter-stage connections are optimized to meet the oscillation condition. The oscillator is designed in a 130-nm SiGe BiCMOS process that offers fT and fMAX of 350 GHz and 450 GHz. According to simulation results, an output power of 3.17 dBm is achieved at 147.6 GHz with phase noise of -115 dBc/Hz at 10 MHz offset and figure-of-merit (FoM) of -180 dBc/Hz.
Chihiro KAMIDAKI Yuma OKUYAMA Tatsuo KUBO Wooram LEE Caglar OZDAG Bodhisatwa SADHU Yo YAMAGUCHI Ning GUAN
This paper presents a power amplifier (PA) designed as a part of a transceiver front-end fabricated in 130-nm SiGe BiCMOS. The PA shares its output antenna port with a low noise amplifier using a low-loss transmission/reception switch. The output matching network of the PA is designed to provide high output power, low AM-AM distortion, and uniform performance over frequencies in the range of 24.25-29.5GHz. Measurements of the front-end in TX mode demonstrate peak S21 of 30.3dB at 26.7GHz, S21 3-dB bandwidth of 9.8GHz from 22.2to 32.0GHz, and saturated output power (Psat) above 20dBm with power-added efficiency (PAE) above 22% from 24 to 30GHz. For a 64-QAM 400MHz bandwidth orthogonal frequency division multiplexing (OFDM) signal, -25dBc error vector magnitude (EVM) is measured at an average output power of 12.3dBm and average PAE of 8.8%. The PA achieves a competitive ITRS FoM of 92.9.
Jeyoen KIM Takumi SOMA Tetsuya MANABE Aya KOJIMA
This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.
Chenxu WANG Hideki KAWAGUCHI Kota WATANABE
An approach to dedicated computers is discussed in this study as a possibility for portable, low-cost, and low-power consumption high-performance computing technologies. Particularly, dataflow architecture dedicated computer of the finite integration technique (FIT) for 2D magnetostatic field simulation is considered for use in industrial applications. The dataflow architecture circuit of the BiCG-Stab matrix solver of the FIT matrix calculation is designed by the very high-speed integrated circuit hardware description language (VHDL). The operation of the dedicated computer's designed circuit is considered by VHDL logic circuit simulation.
Tianfeng FENG Ryuhei UEHARA Giovanni VIGLIETTA
In this paper, we introduce a path embedding problem inspired by the well-known hydrophobic-polar (HP) model of protein folding. A graph is said bicolored if each vertex is assigned a label in the set {red, blue}. For a given bicolored path P and a given bicolored graph G, our problem asks whether we can embed P into G in such a way as to match the colors of the vertices. In our model, G represents a protein's “blueprint,” and P is an amino acid sequence that has to be folded to form (part of) G. We first show that the bicolored path embedding problem is NP-complete even if G is a rectangular grid (a typical scenario in protein folding models) and P and G have the same number of vertices. By contrast, we prove that the problem becomes tractable if the height of the rectangular grid G is constant, even if the length of P is independent of G. Our proof is constructive: we give a polynomial-time algorithm that computes an embedding (or reports that no embedding exists), which implies that the problem is in XP when parameterized according to the height of G. Additionally, we show that the problem of embedding P into a rectangular grid G in such a way as to maximize the number of red-red contacts is NP-hard. (This problem is directly inspired by the HP model of protein folding; it was previously known to be NP-hard if G is not given, and P can be embedded in any way on a grid.) Finally, we show that, given a bicolored graph G, the problem of constructing a path P that embeds in G maximizing red-red contacts is Poly-APX-hard.
Akihito HIRAI Kazutomi MORI Masaomi TSURU Mitsuhiro SHIMOZAWA
This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.
Chihiro MORI Miyu NAKABAYASHI Mamoru SAWAHASHI Teruo KAWAMURA Nobuhiko MIKI
This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.
Tatsuki OGINO Kenta KUROISHI Satomitsu IMAI
In this study, two modification methods that employ graphene-coated carbon fiber woven fabric (GCFC) as an electrode and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a mediator were used to evaluate cathode performance. In addition, a prototype of an atmosphere-exposed ascorbic-acid enzyme biofuel cell (AAEBFC) consisting of an improved GCFC cathode and ABTS was evaluated. No modification was made in the anode region, and only the cathode region was coated with the enzyme of bilirubin oxidase (BOD). As a result of implementing an ABTS-modified cathode in the AAEBFC, an output of 721μW/cm2 was obtained at 0.189V. When the gel thickness was changed, an output of 1200μW/cm2 was obtained at 0.17V. To the best of our knowledge, this is currently the highest reported output for an AAEBFC fueled by ascorbic acid.
This paper proposes a route calculation method for a bicycle navigation system that complies with traffic regulations. The extension of the node map and three kinds of route calculation methods are constructed and evaluated on the basis of travel times and system acceptability survey results. Our findings reveal the effectiveness of the proposed route calculation method and the acceptability of the bicycle navigation system that included the method.
Chao WANG Xianliang LUO Mohamed ATEF Pan TANG
In this paper, a balance operation Transimpedance Amplifier (TIA) with low-noise has been implemented for optical receivers in 130 nm SiGe BiCMOS Technology, in which the optimal tradeoff emitter current density and the location of high-frequency noise corner were analyzed for acquiring low-noise performance. The Auto-Zero Feedback Loop (AZFL) without introducing unnecessary noises at input of the TIA, the tail current sink with high symmetries and the balance operation TIA with the shared output of Operational Amplifier (OpAmp) in AZFL were designed to keep balanced operation for the TIA. Moreover, cascode and shunt-feedback were also employed to expanding bandwidth and decreasing input referred noise. Besides, the formula for calculating high-frequency noise corner in Heterojunction Bipolar Transistor (HBT) TIA with shunt-feedback was derived. The electrical measurement was performed to validate the notions described in this work, appearing 9.6 pA/√Hz of input referred noise current Power Spectral Density (PSD), balance operation (VIN1=896mV, VIN2=896mV, VOUT1=1.978V, VOUT2=1.979V), bandwidth of 32GHz, overall transimpedance gain of 68.6dBΩ, a total 117mW power consumption and chip area of 484µm × 486µm.
The minimum biclique edge cover problem (MBECP) is NP-hard for general graphs. It is known that if we restrict an input graph to the bipartite domino-free class, MBECP can be solved within polynomial-time of input graph size. We show a new polynomial-time solvable graph class for MBECP that is characterized by three forbidden graphs, a domino, a gem and K4. This graph class allows that an input graph is non-bipartite, and includes the bipartite domino-free graph class properly.
The security and reliability of Arabic text exchanged via the Internet have become a challenging area for the research community. Arabic text is very sensitive to modify by malicious attacks and easy to make changes on diacritics i.e. Fat-ha, Kasra and Damma, which are represent the syntax of Arabic language and can make the meaning is differing. In this paper, a Hybrid of Natural Language Processing and Zero-Watermarking Approach (HNLPZWA) has been proposed for the content authentication and tampering detection of Arabic text. The HNLPZWA approach embeds and detects the watermark logically without altering the original text document to embed a watermark key. Fifth level order of word mechanism based on hidden Markov model is integrated with digital zero-watermarking techniques to improve the tampering detection accuracy issues of the previous literature proposed by the researchers. Fifth-level order of Markov model is used as a natural language processing technique in order to analyze the Arabic text. Moreover, it extracts the features of interrelationship between contexts of the text and utilizes the extracted features as watermark information and validates it later with attacked Arabic text to detect any tampering occurred on it. HNLPZWA has been implemented using PHP with VS code IDE. Tampering detection accuracy of HNLPZWA is proved with experiments using four datasets of varying lengths under multiple random locations of insertion, reorder and deletion attacks of experimental datasets. The experimental results show that HNLPZWA is more sensitive for all kinds of tampering attacks with high level accuracy of tampering detection.
Yuri USAMI Kazuaki ISHIKAWA Toshinori TAKAYAMA Masao YANAGISAWA Nozomu TOGAWA
It becomes possible to prevent accidents beforehand by predicting dangerous riding behavior based on recognition of bicycle behaviors. In this paper, we propose a bicycle behavior recognition method using a three-axis acceleration sensor and three-axis gyro sensor equipped with a smartphone when it is installed on a bicycle handlebar. We focus on the periodic handlebar motions for balancing while running a bicycle and reduce the sensor noises caused by them. After that, we use machine learning for recognizing the bicycle behaviors, effectively utilizing the motion features in bicycle behavior recognition. The experimental results demonstrate that the proposed method accurately recognizes the four bicycle behaviors of stop, run straight, turn right, and turn left and its F-measure becomes around 0.9. The results indicate that, even if the smartphone is installed on the noisy bicycle handlebar, our proposed method can recognize the bicycle behaviors with almost the same accuracy as the one when a smartphone is installed on a rear axle of a bicycle on which the handlebar motion noises can be much reduced.
Naoki MATSUDA Hirotaka OKABE Ayako OMURA Miki NAKANO Koji MIYAKE Toshihiko NAGAMURA Hideki KAWAI
Hydrophobic DNA (H-DNA) nano-film was formed as the surface modifier on a thin glass plate working as a slab optical waveguide (SOWF). Cytochrom c (cytc) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 30 minutes. From SOWG absorption spectral changes during automated solution exchange (SE) processes, it was found that about 28.1% of cytc molecules was immobilized in the H-DNA nano-film with keeping their reduction functionality by reducing reagent.
Naoki MATSUDA Hirotaka OKABE Ayako OMURA Miki NAKANO Koji MIYAKE Toshihiko NAGAMURA Hideki KAWAI
Hydrophobic DNA (H-DNA) nano-film was formed on a thin glass plate of 50μm thick working as a slab optical waveguide. Bromothymol blue (BTB) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 20 minutes. From changes in absorption spectra observed with slab optical wave guide (SOWG) during automated solution exchange (SE) processes for 100 times, it was found that about 95% of bromothymol blue (BTB) molecules was immobilized in the H-DNA nano-film with keeping their functionality of color change responsible to pH change in the solution.
For an odd prime p and a positive integer k ≥ 2, we propose and analyze construction of perfect pk-ary sequences of period pk based on cubic polynomials over the integers modulo pk. The constructed perfect polyphase sequences from cubic polynomials is a subclass of the perfect polyphase sequences from the Mow's unified construction. And then, we give a general approach for constructing optimal families of perfect polyphase sequences with some properties of perfect polyphase sequences and their optimal families. By using this, we construct new optimal families of pk-ary perfect polyphase sequences of period pk. The constructed optimal families of perfect polyphase sequences are of size p-1.
Chun-Lin LIN Tzu-Hsiang LIN Ruey-Yi WEI
Bit-interleaved coded modulation with iterative decoding (BICM-ID) is suitable for correlated Rayleigh fading channels. Additionally, BICM-ID using differential encoding can avoid the pilot overhead. In this paper, we consider BICM-ID using 16-DAPSK (differential amplitude and phase-shift keying). We first derive the probability of receiving signals conditioned on the transmission of input bits for general differential encoding; then we propose two new 16-DAPSK bit labeling methods. In addition, convolutional codes for the new bit labeling are developed. Both the minimum distance and the simulation results show that the proposed labeling has better error performance than that of the original differential encoding, and the searched new codes can further improve the error performance.
Sou NOBUKAWA Haruhiko NISHIMURA Teruya YAMANISHI Hirotaka DOHO
Stochastic resonance (SR) is a phenomenon in which signal response in a nonlinear system is enhanced by noise. Fluctuating activities in deterministic chaos are known to cause a phenomenon called chaotic resonance (CR), which is similar to SR. Most previous studies on CR showed that these signal responses were controlled by internal parameters. However, in several applications of CR, it is difficult to control these parameters externally, particularly in biological systems. In this study, to overcome this difficulty, we propose a method for controlling the signal response of CR by adjusting the strength of external feedback control. By using this method, we demonstrate the control of CR in a one-dimensional cubic map, where CR arises from chaos-chaos switching to a weak input signal.
Shusaku EGAMI Takahiro KAWAMURA Akihiko OHSUGA
The illegal parking of bicycles is a serious urban problem in Tokyo. The purpose of this study was to sustainably build Linked Open Data (LOD) to assist in solving the problem of illegally parked bicycles (IPBs) by raising social awareness, in cooperation with the Office for Youth Affairs and Public Safety of the Tokyo Metropolitan Government (Tokyo Bureau). We first extracted information on the problem factors and designed LOD schema for IPBs. Then we collected pieces of data from the Social Networking Service (SNS) and the websites of municipalities to build the illegally parked bicycle LOD (IPBLOD) with more than 200,000 triples. We then estimated the temporal missing data in the LOD based on the causal relations from the problem factors and estimated spatial missing data based on geospatial features. As a result, the number of IPBs can be inferred with about 70% accuracy, and places where bicycles might be illegally parked are estimated with about 31% accuracy. Then we published the complemented LOD and a Web application to visualize the distribution of IPBs in the city. Finally, we applied IPBLOD to large social activity in order to raise social awareness of the IPB issues and to remove IPBs, in cooperation with the Tokyo Bureau.