Hee-Suk PANG SeongJoon BAEK Koeng-Mo SUNG
A simple but effective fundamental frequency estimation method is proposed using parametric cubic convolution. The performance of the method is shown to be good not only for the stationary signals but also for the signal whose fundamental frequency is changing with time. In the simulation, comparisons with other high-accuracy methods are also shown. Due to its accuracy and simplicity, the proposed method is practically useful.
In this work, a temperature stable voltage-to-frequency converter (VFC) in which the output frequency is proportional to the input voltage is proposed. The output frequency range is from 22 kHz to 60 kHz and the difference between simulated and calculated values is less than about 5% for this range of output frequency. The temperature variation of sample output frequencies is less than 0.5% in the temperature range -25C to 75C.
Hidenao TANAKA Atsushi NAKADAIRA
We studied Si and Mg doping characteristics in cubic GaN and fabricated a light emitting diode of cubic GaN on a GaAs substrate by metalorganic vapor-phase epitaxy. The diode structure consisted of undoped and Mg-doped GaN stacking layers deposited on Si-doped GaN and AlGaN layers. The electron-beam-induced-current signal and current injection characteristics of this diode structure were measured. There was a peak at the interface between the Mg-doped and undoped GaN in the electron-beam-induced-current signal. This shows successful growth of the p-n junction. Light emitting operation was achieved by currents injected through the conducting GaAs substrate of this diode at room temperature. We observed electroluminescence below the bandgap energy of cubic GaN with a peak at 2.6 eV.
This paper proposes an intelligent image interpolation method based on Cubic Hermite procedure for improving digital images. Image interpolation has been used to create high-resolution effects in digitized image data, providing sharpness in high frequency image data and smoothness in low frequency image data. Most interpolation techniques proposed in the past are centered on determining pixel values using the relationship between neighboring points. As one of the more prevalent interpolation techniques, Cubic Hermite procedure attains the interpolation with a 3rd order polynomial fit using derivatives of points and adaptive smoothness parameters. Cubic Hermite features many forms of a curved shape, which effectively reduce the problems inherent in interpolations. This paper focuses on a method that intelligently determines the derivatives and adaptive smoothness parameters to effectively contain the interpolation error, achieving significantly improved images. Derivatives are determined by taking a weighted sum of the neighboring points whose weighting function decreases as the intensity difference of neighboring points increases. Smoothness parameter is obtained by training an exemplar image to fit into the Cubic Hermite function such that the interpolation error is minimized at each interpolating point. The simulations indicate that the proposed method achieves improved image results over that of conventional methods in terms of error and image quality performance.
The mathematical theory of bicomplex electromagnetic waves in two-dimensional scattering and diffraction problems is developed. The Vekua's integral expression for the two-dimensional fields valid only in the closed source-free region is generalized into the radiating field. The boundary-value problems for scattering and diffraction are formulated in the bicomplex space. The complex function of a single variable, which obeys the Cauchy-Riemann relations and thus expresses low-frequency aspects of the near field at a wedge of the scatterer, is connected with the radiating field by an integral operator having a suitable kernel. The behaviors of this complex function in the whole space are discussed together with those of the far-zone field or the amplitude of angular spectrum. The Hilbert's factorization scheme is used to find out a linear transformation from the far-zone field to the bicomplex-valued function of a single variable. This transformation is shown to be unique. The new integral expression for the field scattered by a thin metallic strip is also obtained.
Recent progresses in high Tc superconducting quantum interference device (SQUID) magnetometers are discussed. First, intrinsic sensitivity of the SQUID at T=77 K is discussed. For this purpose, transport and noise properties of the bicrystal junction are clarified, and optimization of junction parameters is shown. We also discuss the quality of the SQUID from a comprehensive comparison between experiment and simulation of the SQUID characteristics. Next, we discuss issues to guarantee correct operation of the SQUID magnetometer in noisy environment, such as a method to avoid flux trapping due to earth magnetic field, high-bandwidth electronics and gradiometer. Finally, we briefly describe application fields of the high Tc magnetometer.
Olivier ROUX dit BUISSON Gerard MORIN Frederic PAILLARDET Eric MAZALEYRAT
In deep submicron CMOS and BICMOS technologies, antenna effects affect floating gate charge of usual floating gate test structures, dedicated to capacitor matching measurement. In this paper a new pseudo-floating gate test structure is designed. After test structure and modeling presentation, testing method and results are given for several capacitor layouts (poly-poly and metal-metal).
Hitoshi OKAMURA Masaharu SATO Satoshi NAKAMURA Shuji KISHI Kunio KOKUBU
This paper describes a newly developed FET Coupled Logic (FCL) circuit that operates at very high frequencies with very low supply voltages below 3.3 V. An FCL circuit consists of NMOS source-coupled transistor pairs for current switches, load resistors, emitter followers and current sources that are controlled by a band-gap reference bias generator. The characteristics and performance are discussed by comparing this circuit with other high-speed circuits. The optimal circuit parameters for FCL circuits are also discussed, and the fact is noted that a larger swing voltage enhances the circuit's performance. The simulated delay of a 0.25 µm FCL circuit is less than 15 ps for a 2.5 V power supply, and the simulated maximum toggle frequencies are over 5 GHz and 10 GHz at 2.5 V and 3.3 V power supply, respectively. The simulation results show that FCL circuits achieve the best performance among the current mode circuits, which include ECL circuits, NMOS source-coupled logic circuits. The delay of the FCL circuit is less than half that of an ECL circuit. The maximum toggle frequency of the FCL circuit is about triple that of NMOS source-coupled logic circuit. Because the FCL circuit uses low-cost CMOS-based BiCMOS technologies, its cost performance is superior to ECL circuits that require expensive base-emitter self-aligned processes and trench isolation processes. Using depletion-mode NMOS transistors for current switches can lower the minimum supply voltage for FCL circuits and it is below 1.5 V. The FCL circuit is a promising logic gate circuit for multi-Gbit/s tele/data communication LSIs.
Michio YOTSUYANAGI Hiroshi HASEGAWA Masaharu SATO
A 1.5 V 8 mW BiCMOS video A/D converter has been developed by using a BiCMOS pumping comparator. Combining Bipolar high-speed and good-matching characteristics with CMOS switched capacitor techniques, this A/D converter is suitable for use in battery-operated multimedia terminals.
We have proposed an algorithm to apply perfectly matched layer (PML) absorbing boundary condition to the noncubic cell time-domain method. The extended method has a merit of flexibility in truncating the computational domain by the use of a curvilinear PML. In this paper we apply a circular PML for computing the scattered fields of a dielectric cylinder or cylindrical shell of arbitrary cross section shape. Numerical results are presented to demonstrate the accuracy of this method.
Hiroyuki YAMAMOTO Hiroshi NINOMIYA Hideki ASAI
This paper describes a neuro-based optimization algorithm for three dimensional (3-D) rectangular puzzles which are the problems to arrange the irregular-shaped blocks so that they perfectly fit into a fixed three dimensional rectangular shape. First, the fitting function of the 3-D block, which means the fitting degree of each irregular block to the neighboring block and the rectangular configuration, is described. Next, the energy function for the 3-D rectangular puzzles is proposed, where the horizontal rotation of the block is also considered. Finally, our optimization method is applied to several examples using the 3-D analog neural array and it is shown that our algorithm is useful for solving 3-D rectangular puzzles.
This correspondence reports novel computationally efficient algorithms for multiplication of bicomplex numbers, which belong to hypercomplex numbers. The proposed algorithms require less number of real multiplications than existing methods. Furthermore, they give more effective implementation when applied to constant coefficient digital filters.
It is shown from the Hilberts theory that if the real function Π(θ) has no zeros over the interval [0, 2π], it can be factorized into a product of the factor π+(θ) and its complex conjugate π-(θ)(=). This factorization is tested to decompose a real far-zone field pattern having zeros. To this end, the factorized factors are described in terms of bicomplex mathematics. In our bicomplex mathematics, the temporal imaginary unit "j" is newly defined to distinguish from the spatial imaginary unit i, both of which satisfy i2=-1 and j2=-1.
A bicomplex representation for time-harmonic electromagnetic fields appearing in scattering and diffraction problems is given using two imaginary units i and j. Fieldsolution integral-expressions obtained in the high-frequency and low-frequency limits are shown to provide the new relation between high-frequency diffraction and low-frequency scattering. Simple examples for direct scattering problems are illustrated. It may also be possible to characterize electric or magnetic currents induced on the obstacle in terms of geometrical optics far-fields. This paper outlines some algebraic rules of bicomplex mathematics for diffraction or scattering fields and describes mathematical evidence of the solutions. Major discussions on the relationship between high-frequency and low-frequency fields are relegated to the companion paper which will be published in another journal.
Kiejin LEE Ienari IGUCHI Karen Y. CONSTANTINIAN Gennady A. OVSYANNIKOV Jeha KIM Kwang-Yong KANG
We report the strong microwave Josephson radiation from an array of high-Tc junctions on a MgO bicrystal substrate from centimeter- to millimeter-wave ranges. The dc bias current was fed to the junction array having parallel geometry with the pair of junctions shunted by superconducting loops. The configuration of bias leads was a series of interlocking dc SQUID's geometry which guaranteed the oscillation of all junctions at the same frequency. For a five-junctions array, we observed the coherent output power of about 13 pW at receiving frequency fREC22GHz without an external magnetic flux, which was nearly five times higher than that of a single bicrystal junction. We observed the Josephson linewidth of the selfradiation in coherent state less than 1 GHz by the adjustment of the external flux. The phase differences between adjacent junctions with different IcRn products could be controlled by an external small magnetic field. Submillimeter-wave detector response of the five-junction array was also studied experimentally at frequency f478 GHz.
Yoshio NISHIDA Kazuya SONE Kaori AMANO Shoichi MATSUBA Akira YUKAWA
This paper presents an 8-bit 200M-sample/s (Ms/s) analog-to-digital converter (ADC) applicable to liquid crystal display (LCD) driver systems. The ADC features such circuit techniques as a low-power and high-speed comparator, an open-loop sample-and-hold amplifier with a 3.4-ns acquisition time, a fully differential two step architecture, and a replica circuit. It is fabricated with a 0.8µm BiCMOS process onto an area of only 12mm2 and it dissipates 500mW from a single-5.2V power supply.
Kenichi OHHATA Hiroaki NAMBU Kazuo KANETANI Toru MASUDA Takeshi KUSUNOKI Noriyuki HOMMA
BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.
Shengping JIANG Mingmin XU Hiroyuki ANZAI Akio TAMURA
In CAD and curve-fitting fields, we want to generate such rational cubic Bezier curve which is a unique curve passed given points and convenient to connect other curve segments with C1 connection. However, the method proposed in paper [1] can not meet above objective. in this paper, we propose a new method for generating a unique rational cubic Bezier curve which passed given points. The generated curve is with given tangent vectors at its two end points, and it is convenient to connect other curve segments with C1 connection. Also, some examples of curve generated by this method are given.
Kyoko TSUKANO Takahiro INOUE Keiji OOKUMA
A new current-mode analog BiCMOS multiplier/divider circuit based on the translinear principle is presented. This circuit can be implemented by a standard 0.8µm BiCMOS process. The simulation results showed that the circuit realizes the high-speed and high-precision operation with a 3V supply.
Hisashi MORISHITA Kazuhiro HIRASAWA Tsukasa NAGAO
A broadband rhombic loop antenna is introduced to radiate a circularly polarized wave. This antenna has a single feed and is located above a ground plane. The perimeter of the loop is typically about 1.3 wavelength. One gap is made on the loop to produce a traveling wave distribution of current. Antenna characteristics are calculated by the method of moments and compared with the measured data. By adjusting a perimeter and a gap position of the loop, circular polarization is obtained. In addition, with the appropriate vertex angle of the rhombus, the bandwidth of about 20% for the axial ratio (2dB) is attained and the possibility of controlling the input impedance is found. Finally, it is observed that sense of circular polarization can be changed easily from left-hand to right-hand, and vice versa by switching one gap position to the other on the rhombic loop.