Linhan LI Qianying ZHANG Zekun XU Shijun ZHAO Zhiping SHI Yong GUAN
The Linux kernel has been applied in various security-sensitive fields, so ensuring its security is crucial. Vulnerabilities in the Linux kernel are usually caused by undefined behaviors of the C programming language, the most threatening of which are memory safety vulnerabilities. Both the software-based and hardware approaches to memory safety have disadvantages of poor performance, false positives, and poor compatibility. This paper explores the feasibility of using the safe programming language Rust to reconstruct a Linux kernel component and open-source the component's code. We leverage the Rust FFI mechanism to design a safe foreign interface layer to enable the reconstructed component to invoke other Linux functionalities, and then use Rust to reconstruct the component, during which we leverage Rust's type-safety and ownership mechanisms to improve its security, and finally export the C interface of the component to enable the invocation by the Linux kernel. The performance and memory overhead of the reconstructed component, referred to as “rOOM”, were evaluated, revealing a performance overhead of 8.9% in kernel mode, 5% in user mode, 3% in real time, and a memory overhead of 0.06%. These results suggest that it is possible to develop key components of the Linux kernel using Rust in terms of functionality, performance, and memory overhead.
Wang XU Yongliang MA Kehai CHEN Ming ZHOU Muyun YANG Tiejun ZHAO
Non-autoregressive generation has attracted more and more attention due to its fast decoding speed. Latent alignment objectives, such as CTC, are designed to capture the monotonic alignments between the predicted and output tokens, which have been used for machine translation and sentence summarization. However, our preliminary experiments revealed that CTC performs poorly on document abstractive summarization, where a high compression ratio between the input and output is involved. To address this issue, we conduct a theoretical analysis and propose Hierarchical Latent Alignment (HLA). The basic idea is a two-step alignment process: we first align the sentences in the input and output, and subsequently derive token-level alignment using CTC based on aligned sentences. We evaluate the effectiveness of our proposed approach on two widely used datasets XSUM and CNNDM. The results indicate that our proposed method exhibits remarkable scalability even when dealing with high compression ratios.
Kyosuke YAMASHITA Keisuke HARA Yohei WATANABE Naoto YANAI Junji SHIKATA
This paper considers the problem of balancing traceability and anonymity in designated verifier signatures (DVS), which are a kind of group-oriented signatures. That is, we propose claimable designated verifier signatures (CDVS), where a signer is able to claim that he/she indeed created a signature later. Ordinal DVS does not provide any traceability, which could indicate too strong anonymity. Thus, adding claimability, which can be seen as a sort of traceability, moderates anonymity. We demonstrate two generic constructions of CDVS from (i) ring signatures, (non-ring) signatures, pseudorandom function, and commitment scheme, and (ii) claimable ring signatures (by Park and Sealfon, CRYPTO'19).
Ren TAKEUCHI Rikima MITSUHASHI Masakatsu NISHIGAKI Tetsushi OHKI
The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.
Jie LUO Chengwan HE Hongwei LUO
Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.
Ying ZHAO Youquan XIAN Yongnan LI Peng LIU Dongcheng LI
Record/replay is one essential tool in clouds to provide many capabilities such as fault tolerance, software debugging, and security analysis by recording the execution into a log and replaying it deterministically later on. However, in virtualized environments, the log file increases heavily due to saving a considerable amount of I/O data, finally introducing significant storage costs. To mitigate this problem, this paper proposes RR-Row, a redirect-on-write based virtual machine disk for record/replay scenarios. RR-Row appends the written data into new blocks rather than overwrites the original blocks during normal execution so that all written data are reserved in the disk. In this way, the record system only saves the block id instead of the full content, and the replay system can directly fetch the data from the disk rather than the log, thereby reducing the log size a lot. In addition, we propose several optimizations for improving I/O performance so that it is also suitable for normal execution. We implement RR-Row for QEMU and conduct a set of experiments. The results show that RR-Row reduces the log size by 68% compared to the currently used Raw/QCow2 disk without compromising I/O performance.
Mingyu LI Jihang YIN Yonggang XU Gang HUA Nian XU
Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.
Zhaohu LIU Peng SONG Jinshuai MU Wenming ZHENG
Most existing multi-view subspace clustering approaches only capture the inter-view similarities between different views and ignore the optimal local geometric structure of the original data. To this end, in this letter, we put forward a novel method named shared latent embedding learning for multi-view subspace clustering (SLE-MSC), which can efficiently capture a better latent space. To be specific, we introduce a pseudo-label constraint to capture the intra-view similarities within each view. Meanwhile, we utilize a novel optimal graph Laplacian to learn the consistent latent representation, in which the common manifold is considered as the optimal manifold to obtain a more reasonable local geometric structure. Comprehensive experimental results indicate the superiority and effectiveness of the proposed method.
Kazuki EGASHIRA Atsuyuki MIYAI Qing YU Go IRIE Kiyoharu AIZAWA
We propose a novel classification problem setting where Undesirable Classes (UCs) are defined for each class. UC is the class you specifically want to avoid misclassifying. To address this setting, we propose a framework to reduce the probabilities for UCs while increasing the probability for a correct class.
Wenkai LIU Lin ZHANG Menglong WU Xichang CAI Hongxia DONG
The goal of Acoustic Scene Classification (ASC) is to simulate human analysis of the surrounding environment and make accurate decisions promptly. Extracting useful information from audio signals in real-world scenarios is challenging and can lead to suboptimal performance in acoustic scene classification, especially in environments with relatively homogeneous backgrounds. To address this problem, we model the sobering-up process of “drunkards” in real-life and the guiding behavior of normal people, and construct a high-precision lightweight model implementation methodology called the “drunkard methodology”. The core idea includes three parts: (1) designing a special feature transformation module based on the different mechanisms of information perception between drunkards and ordinary people, to simulate the process of gradually sobering up and the changes in feature perception ability; (2) studying a lightweight “drunken” model that matches the normal model's perception processing process. The model uses a multi-scale class residual block structure and can obtain finer feature representations by fusing information extracted at different scales; (3) introducing a guiding and fusion module of the conventional model to the “drunken” model to speed up the sobering-up process and achieve iterative optimization and accuracy improvement. Evaluation results on the official dataset of DCASE2022 Task1 demonstrate that our baseline system achieves 40.4% accuracy and 2.284 loss under the condition of 442.67K parameters and 19.40M MAC (multiply-accumulate operations). After adopting the “drunkard” mechanism, the accuracy is improved to 45.2%, and the loss is reduced by 0.634 under the condition of 551.89K parameters and 23.6M MAC.
Chikako TAKASAKI Tomohiro KORIKAWA Kyota HATTORI Hidenari OHWADA
In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.
Yanyan CHANG Wei ZHANG Hao WANG Lina SHI Yanyan LIU
This letter introduces a prime-factor Galois field Fourier transform (PF-GFFT) architecture to frequency domain decoding (FDD) of cyclic codes. Firstly, a fast FDD scheme is designed which converts the original single longer Fourier transform to a multi-dimensional smaller transform. Furthermore, a ladder-shift architecture for PF-GFFT is explored to solve the rearrangement problem of input and output data. In this regard, PF-GFFT is considered as a lower order spectral calculation scheme, which has sufficient preponderance in reducing the computational complexity. Simulation results show that PF-GFFT compares favorably with the current general GFFT, simplified-GFFT (S-GFFT), and circular shifts-GFFT (CS-GFFT) algorithms in time-consuming cost, and is nearly an order of magnitude or smaller than them. The superiority is a benefit to improving the decoding speed and has potential application value in decoding cyclic codes with longer code lengths.
Weisen LUO Xiuqin WEI Hiroo SEKIYA
This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.
Shinichi MURATA Takahiro MATSUDA
To localize an unknown wave source in non-line-of-sight environments, a wave source localization scheme using multiple unmanned-aerial-vehicles (UAVs) is proposed. In this scheme, each UAV estimates the direction-of-arrivals (DoAs) of received signals and the wave source is localized from the estimated DoAs by means of maximum likelihood estimation. In this study, by extending the concept of this scheme, we propose a novel wave source localization scheme using a single UAV. In the proposed scheme, the UAV moves on the path comprising multiple measurement points and the wave source is sequentially localized from DoA distributions estimated at these measurement points. At each measurement point, with a moving path planning algorithm, the UAV determines the next measurement point from the estimated DoA distributions and measurement points that the UAV has already visited. We consider two moving path planning algorithms, and validate the proposed scheme through simulation experiments.
Kensuke IIZUKA Haruna TAKAGI Aika KAMEI Kazuei HIRONAKA Hideharu AMANO
FPGA cluster is a promising platform for future computing not only in the cloud but in the 5G wireless base stations with limited power supply by taking significant advantage of power efficiency. However, almost no power analyses with real systems have been reported. This work reports the detailed power consumption analyses of two FPGA clusters, namely FiC and M-KUBOS clusters with introducing power measurement tools and running the real applications. From the detailed analyses, we find that the number of activated links mainly determines the total power consumption of the systems regardless they are used or not. To improve the performance of applications while reducing power consumption, we should increase the clock frequency of the applications, use the minimum number of links and apply link aggregation. We also propose the power model for both clusters from the results of the analyses and this model can estimate the total power consumption of both FPGA clusters at the design step with 15% errors at maximum.
The aim of a computer-aided drawing therapy system in this work is to associate drawings which a client makes with the client's mental state in quantitative terms. A case study is conducted on experimental data which contain both pastel drawings and mental state scores obtained from the same client in a psychotherapy program. To perform such association through colors, we translate a drawing to a color feature by measuring its representative colors as primary color rates. A primary color rate of a color is defined from a psychological primary color in a way such that it shows a rate of emotional properties of the psychological primary color which is supposed to affect the color. To obtain several informative colors as representative ones of a drawing, we define two kinds of color: approximate colors extracted by color reduction, and area-averaged colors calculated from the approximate colors. A color analysis method for extracting representative colors from each drawing in a drawing sequence under the same conditions is presented. To estimate how closely a color feature is associated with a concurrent mental state, we propose a method of utilizing machine-learning classification. A practical way of building a classification model through training and validation on a very small dataset is presented. The classification accuracy reached by the model is considered as the degree of association of the color feature with the mental state scores given in the dataset. Experiments were carried out on given clinical data. Several kinds of color feature were compared in terms of the association with the same mental state. As a result, we found out a good color feature with the highest degree of association. Also, primary color rates proved more effective in representing colors in psychological terms than RGB components. The experimentals provide evidence that colors can be associated quantitatively with states of human mind.
Sei-ichiro KAMATA Tsunenori MINE
In 2014, the above paper entitled ‘Quasi-Linear Support Vector Machine for Nonlinear Classification’ was published by Zhou, et al. [1]. They proposed a quasi-linear kernel function for support vector machine (SVM). However, in this letter, we point out that this proposed kernel function is a part of multiple kernel functions generated by well-known multiple kernel learning which is proposed by Bach, et al. [2] in 2004. Since then, there have been a lot of related papers on multiple kernel learning with several applications [3]. This letter verifies that the main kernel function proposed by Zhou, et al. [1] can be derived using multiple kernel learning algorithms [3]. In the kernel construction, Zhou, et al. [1] used Gaussian kernels, but the multiple kernel learning had already discussed the locality of additive Gaussian kernels or other kernels in the framework [4], [5]. Especially additive Gaussian or other kernels were discussed in tutorial at major international conference ECCV2012 [6]. The authors did not discuss these matters.
Fuma SAWA Yoshinori KAMIZONO Wataru KOBAYASHI Ittetsu TANIGUCHI Hiroki NISHIKAWA Takao ONOYE
Advanced driver-assistance systems (ADAS) generally play an important role to support safe drive by detecting potential risk factors beforehand and informing the driver of them. However, if too many services in ADAS rely on visual-based technologies, the driver becomes increasingly burdened and exhausted especially on their eyes. The drivers should be back out of monitoring tasks other than significantly important ones in order to alleviate the burden of the driver as long as possible. In-vehicle auditory signals to assist the safe drive have been appealing as another approach to altering visual suggestions in recent years. In this paper, we developed an in-vehicle auditory signals evaluation platform in an existing driving simulator. In addition, using in-vehicle auditory signals, we have demonstrated that our developed platform has highlighted the possibility to partially switch from only visual-based tasks to mixing with auditory-based ones for alleviating the burden on drivers.
We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].
Hiroyuki ASANO Hiraku OKADA Chedlia BEN NAILA Masaaki KATAYAMA
In this paper, a wireless communication network that uses unmanned aerial vehicles (UAVs) in the sky to transmit information between ground users is considered. We highlight a delay-tolerant network, where information is relayed in a store-and-forward fashion by establishing two types of intermittent communication links: between a UAV and a user (UAV-to-user) and between UAVs (UAV-to-UAV). Thus, a flight algorithm that controls the movement of the UAVs is crucial in achieving rapid information transmission. Our study proposes new flight algorithms that simultaneously consider the two types of communication links. In UAV-to-UAV links, the direct information transmission between two UAVs and the indirect transmission through other UAVs are considered separately. The movement of the UAVs is controlled by solving an optimization problem at certain time intervals, with a variable consideration ratio of the two types of links. In addition, we investigate not only the case where all UAVs move cooperatively but also the case where each UAV moves autonomously. Simulation results show that the proposed algorithms are effective. Moreover, they indicate the existence of an optimal consideration ratio of the two types of communication and demonstrate that our approach enables the control of frequencies of establishing the communication links. We conclude that increasing the frequency of indirect communication between UAVs improves network performance.