The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CL(2832hit)

161-180hit(2832hit)

  • Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:5
      Page(s):
    936-945

    Distributed edge cloud computing is an important computation infrastructure for Internet of Things (IoT) and its task offloading problem has attracted much attention recently. Most existing work on task offloading in distributed edge cloud computing usually assumes that each self-interested user owns one edge server and chooses whether to execute its tasks locally or to offload the tasks to cloud servers. The goal of each edge server is to maximize its own interest like low delay cost, which corresponds to a non-cooperative setting. However, with the strong development of smart IoT communities such as smart hospital and smart factory, all edge and cloud servers can belong to one organization like a technology company. This corresponds to a cooperative setting where the goal of the organization is to maximize the team interest in the overall edge cloud computing system. In this paper, we consider a new problem called cooperative task offloading where all edge servers try to cooperate to make the entire edge cloud computing system achieve good performance such as low delay cost and low energy cost. However, this problem is hard to solve due to two issues: 1) each edge server status dynamically changes and task arrival is uncertain; 2) each edge server can observe only its own status, which makes it hard to optimize team interest as global information is unavailable. For solving these issues, we formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) which can well handle the dynamic features under partial observations. Then, we apply a multi-agent reinforcement learning algorithm called value decomposition network (VDN) and propose a VDN-based task offloading algorithm (VDN-TO) to solve the problem. Specifically, the motivation is that we use a team value function to evaluate the team interest, which is then divided into individual value functions for each edge server. Then, each edge server updates its individual value function in the direction that can maximize the team interest. Finally, we choose a part of a real dataset to evaluate our algorithm and the results show the effectiveness of our algorithm in a comparison with some other existing methods.

  • Specification and Verification of Multitask Real-Time Systems Using the OTS/CafeOBJ Method

    Masaki NAKAMURA  Shuki HIGASHI  Kazutoshi SAKAKIBARA  Kazuhiro OGATA  

     
    PAPER

      Pubricized:
    2021/09/24
      Vol:
    E105-A No:5
      Page(s):
    823-832

    Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • Optimal Control of Timed Petri Nets Under Temporal Logic Constraints with Generalized Mutual Exclusion

    Kohei FUJITA  Toshimitsu USHIO  

     
    PAPER

      Pubricized:
    2021/10/13
      Vol:
    E105-A No:5
      Page(s):
    808-815

    This paper presents a novel method for optimal control of timed Petri nets, introducing a novel temporal logic based constraint called a generalized mutual exclusion temporal constraint (GMETC). The GMETC is described by a metric temporal logic (MTL) formula where each atomic proposition represents a generalized mutual exclusion constraint (GMEC). We formulate an optimal control problem of the timed Petri nets under a given GMETC and solve the problem by transforming it into an integer linear programming problem where the MTL formula is encoded by linear inequalities. We show the effectiveness of the proposed approach by a numerical simulation.

  • Performance Evaluation of Classification and Verification with Quadrant IQ Transition Image

    Hiro TAMURA  Kiyoshi YANAGISAWA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    580-587

    This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.

  • Design of Continuous Class-B/J Power Amplifier Based on Mirrored Lowpass Filter Matching Structure

    Guohua LIU  Huabang ZHONG  Cantianci GUO  Zhiqun CHENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/10/21
      Vol:
    E105-C No:4
      Page(s):
    172-175

    This paper proposes a methodology for designing broadband class B/J power amplifier based on a mirrored lowpass filter matching structure. According to this filter theory, the impedance of this design method is mainly related to the cutoff frequency. Series inductors and shunt capacitors filter out high frequencies. The change of input impedance with frequency is small in the passband. Which can suppress higher harmonics and expand bandwidth. In order to confirm the validity of the design method, a broadband high-efficiency power amplifier in the 1.3 - 3.9GHz band is designed and fabricated. Measurement results show that the output power is greater than 40.5dBm, drain efficiency is 61.2% - 70.8% and the gain is greater than 10dB.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Discovering Message Templates on Large Scale Bitcoin Abuse Reports Using a Two-Fold NLP-Based Clustering Method

    Jinho CHOI  Taehwa LEE  Kwanwoo KIM  Minjae SEO  Jian CUI  Seungwon SHIN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/01/11
      Vol:
    E105-D No:4
      Page(s):
    824-827

    Bitcoin is currently a hot issue worldwide, and it is expected to become a new legal tender that replaces the current currency started with El Salvador. Due to the nature of cryptocurrency, however, difficulties in tracking led to the arising of misuses and abuses. Consequently, the pain of innocent victims by exploiting these bitcoins abuse is also increasing. We propose a way to detect new signatures by applying two-fold NLP-based clustering techniques to text data of Bitcoin abuse reports received from actual victims. By clustering the reports of text data, we were able to cluster the message templates as the same campaigns. The new approach using the abuse massage template representing clustering as a signature for identifying abusers is much efficacious.

  • Triple Loss Based Framework for Generalized Zero-Shot Learning

    Yaying SHEN  Qun LI  Ding XU  Ziyi ZHANG  Rui YANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/12/27
      Vol:
    E105-D No:4
      Page(s):
    832-835

    A triple loss based framework for generalized zero-shot learning is presented in this letter. The approach learns a shared latent space for image features and attributes by using aligned variational autoencoders and variants of triplet loss. Then we train a classifier in the latent space. The experimental results demonstrate that the proposed framework achieves great improvement.

  • Sea Clutter Image Segmentation Method of High Frequency Surface Wave Radar Based on the Improved Deeplab Network

    Haotian CHEN  Sukhoon LEE  Di YAO  Dongwon JEONG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/10/12
      Vol:
    E105-A No:4
      Page(s):
    730-733

    High Frequency Surface Wave Radar (HFSWR) can achieve over-the-horizon detection, which can effectively detect and track the ships and ultra-low altitude aircrafts, as well as the acquisition of sea state information such as icebergs and ocean currents and so on. However, HFSWR is seriously affected by the clutters, especially sea clutter and ionospheric clutter. In this paper, we propose a deep learning image semantic segmentation method based on optimized Deeplabv3+ network to achieve the automatic detection of sea clutter and ionospheric clutter using the measured R-D spectrum images of HFSWR during the typhoon as experimental data, which avoids the disadvantage of traditional detection methods that require a large amount of a priori knowledge and provides a basis for subsequent the clutter suppression or the clutter characteristics research.

  • A Method of K-Means Clustering Based on TF-IDF for Software Requirements Documents Written in Chinese Language

    Jing ZHU  Song HUANG  Yaqing SHI  Kaishun WU  Yanqiu WANG  

     
    PAPER-Software Engineering

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:4
      Page(s):
    736-754

    Nowadays there is no way to automatically obtain the function points when using function point analyze (FPA) method, especially for the requirement documents written in Chinese language. Considering the characteristics of Chinese grammar in words segmentation, it is necessary to divide words accurately Chinese words, so that the subsequent entity recognition and disambiguation can be carried out in a smaller range, which lays a solid foundation for the efficient automatic extraction of the function points. Therefore, this paper proposed a method of K-Means clustering based on TF-IDF, and conducts experiments with 24 software requirement documents written in Chinese language. The results show that the best clustering effect is achieved when the extracted information is retained by 55% to 75% and the number of clusters takes the middle value of the total number of clusters. Not only for Chinese, this method and conclusion of this paper, but provides an important reference for automatic extraction of function points from software requirements documents written in other Oriental languages, and also fills the gaps of data preprocessing in the early stage of automatic calculation function points.

  • Assessment System of Presentation Slide Design Using Visual and Structural Features

    Shengzhou YI  Junichiro MATSUGAMI  Toshihiko YAMASAKI  

     
    PAPER

      Pubricized:
    2021/12/01
      Vol:
    E105-D No:3
      Page(s):
    587-596

    Developing well-designed presentation slides is challenging for many people, especially novices. The ability to build high quality slideshows is becoming more important in society. In this study, a neural network was used to identify novice vs. well-designed presentation slides based on visual and structural features. For such a purpose, a dataset containing 1,080 slide pairs was newly constructed. One of each pair was created by a novice, and the other was the improved one by the same person according to the experts' advice. Ten checkpoints frequently pointed out by professional consultants were extracted and set as prediction targets. The intrinsic problem was that the label distribution was imbalanced, because only a part of the samples had corresponding design problems. Therefore, re-sampling methods for addressing class imbalance were applied to improve the accuracy of the proposed model. Furthermore, we combined the target task with an assistant task for transfer and multi-task learning, which helped the proposed model achieve better performance. After the optimal settings were used for each checkpoint, the average accuracy of the proposed model rose up to 81.79%. With the advice provided by our assessment system, the novices significantly improved their slide design.

  • Cyclic Shift Problems on Graphs

    Kwon Kham SAI  Giovanni VIGLIETTA  Ryuhei UEHARA  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-D No:3
      Page(s):
    532-540

    We study a new reconfiguration problem inspired by classic mechanical puzzles: a colored token is placed on each vertex of a given graph; we are also given a set of distinguished cycles on the graph. We are tasked with rearranging the tokens from a given initial configuration to a final one by using cyclic shift operations along the distinguished cycles. We call this a cyclic shift puzzle. We first investigate a large class of graphs, which generalizes several classic cyclic shift puzzles, and we give a characterization of which final configurations can be reached from a given initial configuration. Our proofs are constructive, and yield efficient methods for shifting tokens to reach the desired configurations. On the other hand, when the goal is to find a shortest sequence of shifting operations, we show that the problem is NP-hard, even for puzzles with tokens of only two different colors.

  • Fault Injection Attacks Utilizing Waveform Pattern Matching against Neural Networks Processing on Microcontroller Open Access

    Yuta FUKUDA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/09/22
      Vol:
    E105-A No:3
      Page(s):
    300-310

    Deep learning applications have often been processed in the cloud or on servers. Still, for applications that require privacy protection and real-time processing, the execution environment is moved to edge devices. Edge devices that implement a neural network (NN) are physically accessible to an attacker. Therefore, physical attacks are a risk. Fault attacks on these devices are capable of misleading classification results and can lead to serious accidents. Therefore, we focus on the softmax function and evaluate a fault attack using a clock glitch against NN implemented in an 8-bit microcontroller. The clock glitch is used for fault injection, and the injection timing is controlled by monitoring the power waveform. The specific waveform is enrolled in advance, and the glitch timing pulse is generated by the sum of absolute difference (SAD) matching algorithm. Misclassification can be achieved by appropriately injecting glitches triggered by pattern detection. We propose a countermeasure against fault injection attacks that utilizes the randomization of power waveforms. The SAD matching is disabled by random number initialization on the summation register of the softmax function.

  • Balanced Whiteman Generalized Cyclotomic Sequences with Maximal 2-adic Complexity

    Chun-e ZHAO  Yuhua SUN  Tongjiang YAN  Xubo ZHAO  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/09/21
      Vol:
    E105-A No:3
      Page(s):
    603-606

    Binary sequences with high linear complexity and high 2-adic complexity have important applications in communication and cryptography. In this paper, the 2-adic complexity of a class of balanced Whiteman generalized cyclotomic sequences which have high linear complexity is considered. Through calculating the determinant of the circulant matrix constructed by one of these sequences, the result shows that the 2-adic complexity of this class of sequences is large enough to resist the attack of the rational approximation algorithm (RAA) for feedback with carry shift registers (FCSRs).

  • Discriminative Part CNN for Pedestrian Detection

    Yu WANG  Cong CAO  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/12/06
      Vol:
    E105-D No:3
      Page(s):
    700-712

    Pedestrian detection is a significant task in computer vision. In recent years, it is widely used in applications such as intelligent surveillance systems and automated driving systems. Although it has been exhaustively studied in the last decade, the occlusion handling issue still remains unsolved. One convincing idea is to first detect human body parts, and then utilize the parts information to estimate the pedestrians' existence. Many parts-based pedestrian detection approaches have been proposed based on this idea. However, in most of these approaches, the low-quality parts mining and the clumsy part detector combination is a bottleneck that limits the detection performance. To eliminate the bottleneck, we propose Discriminative Part CNN (DP-CNN). Our approach has two main contributions: (1) We propose a high-quality body parts mining method based on both convolutional layer features and body part subclasses. The mined part clusters are not only discriminative but also representative, and can help to construct powerful pedestrian detectors. (2) We propose a novel method to combine multiple part detectors. We convert the part detectors to a middle layer of a CNN and optimize the whole detection pipeline by fine-tuning that CNN. In experiments, it shows astonishing effectiveness of optimization and robustness of occlusion handling.

  • Mantle-Cloak Antenna by Controlling Surface Reactance of Dielectric-Loaded Dipole Antenna

    Thanh Binh NGUYEN  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    275-284

    We developed a mantle-cloak antenna by controlling the surface reactance of a dielectric-loaded dipole antenna. First, a mantle-cloak antenna with an assumed ideal metasurface sheet was designed, and band rejection characteristics were obtained by controlling the surface reactance of the mantle cloak. The variable range of the frequency spacing between the operating and stopband frequencies of the antenna was clarified by changing the value of the surface reactance. Next, a mantle-cloak antenna that uses vertical strip conductors was designed to clarify the characteristics and operating principle of the antenna. It was confirmed that the stopband frequency was 1130MHz, and the proposed antenna had a 36.3% bandwidth (|S11| ≤ -10dB) from 700 to 1010MHz. By comparing the |S11| characteristics and the input impedance characteristics of the proposed antenna with those of the dielectric-loaded antenna, the effect of the mantle cloak was confirmed. Finally, a prototype of the mantle-cloak antenna that uses vertical strip conductors was developed and measured to validate the simulation results. The measurement results were consistent with the simulation results.

  • Polarity Classification of Social Media Feeds Using Incremental Learning — A Deep Learning Approach

    Suresh JAGANATHAN  Sathya MADHUSUDHANAN  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:3
      Page(s):
    584-593

    Online feeds are streamed continuously in batches with varied polarities at varying times. The system handling the online feeds must be trained to classify all the varying polarities occurring dynamically. The polarity classification system designed for the online feeds must address two significant challenges: i) stability-plasticity, ii) category-proliferation. The challenges faced in the polarity classification of online feeds can be addressed using the technique of incremental learning, which serves to learn new classes dynamically and also retains the previously learned knowledge. This paper proposes a new incremental learning methodology, ILOF (Incremental Learning of Online Feeds) to classify the feeds by adopting Deep Learning Techniques such as RNN (Recurrent Neural Networks) and LSTM (Long Short Term Memory) and also ELM (Extreme Learning Machine) for addressing the above stated problems. The proposed method creates a separate model for each batch using ELM and incrementally learns from the trained batches. The training of each batch avoids the retraining of old feeds, thus saving training time and memory space. The trained feeds can be discarded when new batch of feeds arrives. Experiments are carried out using the standard datasets comprising of long feeds (IMDB, Sentiment140) and short feeds (Twitter, WhatsApp, and Twitter airline sentiment) and the proposed method showed positive results in terms of better performance and accuracy.

  • GPGPU Implementation of Variational Bayesian Gaussian Mixture Models

    Hiroki NISHIMOTO  Renyuan ZHANG  Yasuhiko NAKASHIMA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/11/24
      Vol:
    E105-D No:3
      Page(s):
    611-622

    The efficient implementation strategy for speeding up high-quality clustering algorithms is developed on the basis of general purpose graphic processing units (GPGPUs) in this work. Among various clustering algorithms, a sophisticated Gaussian mixture model (GMM) by estimating parameters through variational Bayesian (VB) mechanism is conducted due to its superior performances. Since the VB-GMM methodology is computation-hungry, the GPGPU is employed to carry out massive matrix-computations. To efficiently migrate the conventional CPU-oriented schemes of VB-GMM onto GPGPU platforms, an entire migration-flow with thirteen stages is presented in detail. The CPU-GPGPU co-operation scheme, execution re-order, and memory access optimization are proposed for optimizing the GPGPU utilization and maximizing the clustering speed. Five types of real-world applications along with relevant data-sets are introduced for the cross-validation. From the experimental results, the feasibility of implementing VB-GMM algorithm by GPGPU is verified with practical benefits. The proposed GPGPU migration achieves 192x speedup in maximum. Furthermore, it succeeded in identifying the proper number of clusters, which is hardly conducted by the EM-algotihm.

  • Android Malware Detection Based on Functional Classification

    Wenhao FAN  Dong LIU  Fan WU  Bihua TANG  Yuan'an LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/01
      Vol:
    E105-D No:3
      Page(s):
    656-666

    Android operating system occupies a high share in the mobile terminal market. It promotes the rapid development of Android applications (apps). However, the emergence of Android malware greatly endangers the security of Android smartphone users. Existing research works have proposed a lot of methods for Android malware detection, but they did not make the utilization of apps' functional category information so that the strong similarity between benign apps in the same functional category is ignored. In this paper, we propose an Android malware detection scheme based on the functional classification. The benign apps in the same functional category are more similar to each other, so we can use less features to detect malware and improve the detection accuracy in the same functional category. The aim of our scheme is to provide an automatic application functional classification method with high accuracy. We design an Android application functional classification method inspired by the hyperlink induced topic search (HITS) algorithm. Using the results of automatic classification, we further design a malware detection method based on app similarity in the same functional category. We use benign apps from the Google Play Store and use malware apps from the Drebin malware set to evaluate our scheme. The experimental results show that our method can effectively improve the accuracy of malware detection.

161-180hit(2832hit)