The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CL(2832hit)

81-100hit(2832hit)

  • Access Point Selection Algorithm Based on Coevolution Particle Swarm in Cell-Free Massive MIMO Systems

    Hengzhong ZHI  Haibin WAN  Tuanfa QIN  Zhengqiang WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    578-585

    In this paper, we investigate the Access Point (AP) selection problem in Cell-Free Massive multiple-input multiple-output (MIMO) system. Firstly, we add a connecting coefficient to the uplink data transmission model. Then, the problem of AP selection is formulated as a discrete combinatorial optimization problem which can be dealt with by the particle swarm algorithm. However, when the number of optimization variables is large, the search efficiency of the traditional particle swarm algorithm will be significantly reduced. Then, we propose an ‘user-centric’ cooperative coevolution scheme which includes the proposed probability-based particle evolution strategy and random-sampling-based particle evaluation mechanism to deal with the search efficiency problem. Simulation results show that proposed algorithm has better performance than other existing algorithms.

  • Adaptive Buffering Time Optimization for Path Tracking Control of Unmanned Vehicle by Cloud Server with Digital Twin

    Yudai YOSHIMOTO  Masaki MINAGAWA  Ryohei NAKAMURA  Hisaya HADAMA  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/12/26
      Vol:
    E106-B No:7
      Page(s):
    603-613

    Autonomous driving technology is expected to be applied to various applications with unmanned vehicles (UVs), such as small delivery vehicles for office supplies and smart wheelchairs. UV remote control by a cloud server (CS) would achieve cost-effective applications with a large number of UVs. In general, dead time in real-time feedback control reduces the control accuracy. On remote path tracking control by the CS, UV control accuracy deteriorates due to transmission delay and jitter through the Internet. Digital twin computing (DTC) and jitter buffer are effective to solve this problem. In our previous study, we clarified effectiveness of them in UV remote control by CS. The jitter buffer absorbs the transmission delay jitter of control signals. This is effective to achieve accurate UV remote control. Adaptive buffering time optimization according to real-time transmission characteristics is necessary to achieve more accurate UV control in CS-based remote control system with DTC and jitter buffer. In this study, we proposed a method for the adaptive optimization according to real-time transmission delay characteristics. To quantitatively evaluate the effectiveness of the method, we created a UV remote control simulator of the control system. The results of simulations quantitatively clarify that the adaptive optimization by the proposed method improves the UV control accuracy.

  • Unsupervised Outlier Detection based on Random Projection Outlyingness with Local Score Weighting

    Akira TAMAMORI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/03/29
      Vol:
    E106-D No:7
      Page(s):
    1244-1248

    This paper proposes an enhanced model of Random Projection Outlyingness (RPO) for unsupervised outlier detection. When datasets have multiple modalities, the RPOs have frequent detection errors. The proposed model deals with this problem via unsupervised clustering and a local score weighting. The experimental results demonstrate that the proposed model outperforms RPO and is comparable with other existing unsupervised models on benchmark datasets, in terms of in terms of Area Under the Curves (AUCs) of Receiver Operating Characteristic (ROC).

  • Location First Non-Maximum Suppression for Uncovered Muck Truck Detection

    Yuxiang ZHANG  Dehua LIU  Chuanpeng SU  Juncheng LIU  

     
    PAPER-Image

      Pubricized:
    2022/12/13
      Vol:
    E106-A No:6
      Page(s):
    924-931

    Uncovered muck truck detection aims to detect the muck truck and distinguish whether it is covered or not by dust-proof net to trace the source of pollution. Unlike traditional detection problem, recalling all uncovered trucks is more important than accurate locating for pollution traceability. When two objects are very close in an image, the occluded object may not be recalled because the non-maximum suppression (NMS) algorithm can remove the overlapped proposal. To address this issue, we propose a Location First NMS method to match the ground truth boxes and predicted boxes by position rather than class identifier (ID) in the training stage. Firstly, a box matching method is introduced to re-assign the predicted box ID using the closest ground truth one, which can avoid object missing when the IoU of two proposals is greater than the threshold. Secondly, we design a loss function to adapt the proposed algorithm. Thirdly, a uncovered muck truck detection system is designed using the method in a real scene. Experiment results show the effectiveness of the proposed method.

  • A Novel Discriminative Dictionary Learning Method for Image Classification

    Wentao LYU  Di ZHOU  Chengqun WANG  Lu ZHANG  

     
    PAPER-Image

      Pubricized:
    2022/12/14
      Vol:
    E106-A No:6
      Page(s):
    932-937

    In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.

  • Effect of the State of Catalytic Nanoparticles on the Growth of Vertically Aligned Carbon Nanotubes

    Shohei SAKURAI  Mayu IIDA  Kosei OKUNUKI  Masahito KUSHIDA  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    208-213

    In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.

  • Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs

    Kazuya TADA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/14
      Vol:
    E106-C No:6
      Page(s):
    232-235

    An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.

  • Implementation of Fully-Pipelined CNN Inference Accelerator on FPGA and HBM2 Platform

    Van-Cam NGUYEN  Yasuhiko NAKASHIMA  

     
    PAPER-Computer System

      Pubricized:
    2023/03/17
      Vol:
    E106-D No:6
      Page(s):
    1117-1129

    Many deep convolutional neural network (CNN) inference accelerators on the field-programmable gate array (FPGA) platform have been widely adopted due to their low power consumption and high performance. In this paper, we develop the following to improve performance and power efficiency. First, we use a high bandwidth memory (HBM) to expand the bandwidth of data transmission between the off-chip memory and the accelerator. Second, a fully-pipelined manner, which consists of pipelined inter-layer computation and a pipelined computation engine, is implemented to decrease idle time among layers. Third, a multi-core architecture with shared-dual buffers is designed to reduce off-chip memory access and maximize the throughput. We designed the proposed accelerator on the Xilinx Alveo U280 platform with in-depth Verilog HDL instead of high-level synthesis as the previous works and explored the VGG-16 model to verify the system during our experiment. With a similar accelerator architecture, the experimental results demonstrate that the memory bandwidth of HBM is 13.2× better than DDR4. Compared with other accelerators in terms of throughput, our accelerator is 1.9×/1.65×/11.9× better than FPGA+HBM2 based/low batch size (4) GPGPU/low batch size (4) CPU. Compared with the previous DDR+FPGA/DDR+GPGPU/DDR+CPU based accelerators in terms of power efficiency, our proposed system provides 1.4-1.7×/1.7-12.6×/6.6-37.1× improvement with the large-scale CNN model.

  • Image Segmentation-Based Bicycle Riding Side Identification Method

    Jeyoen KIM  Takumi SOMA  Tetsuya MANABE  Aya KOJIMA  

     
    PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    775-783

    This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.

  • Elevation Filter Design for Short-Range Clutter Suppression on Airborne Radar in MIMO System

    Fengde JIA  Jihong TAN  Xiaochen LU  Junhui QIAN  

     
    LETTER

      Pubricized:
    2022/11/04
      Vol:
    E106-A No:5
      Page(s):
    812-815

    Short-range ambiguous clutter can seriously affect the performance of airborne radar target detection when detecting long-range targets. In this letter, a multiple-input-multiple-output (MIMO) array structure elevation filter (EF) is designed to suppress short-range clutter (SRC). The sidelobe level value in the short-range clutter region is taken as the objective function to construct the optimization problem and the optimal EF weight vector can be obtained by using the convex optimization tool. The simulation results show that the MIMO system can achieve better range ambiguous clutter suppression than the traditional phased array (PA) system.

  • Thermal Noise Analysis of Ring Amplifier in Cyclic Analog-to-Digital Converter

    Eiki KAYAMA  Kenta MORI  Taichi MAEBOU  Yuanchi CHEN  Hao SAN  Tatsuji MATSUURA  Masao HOTTA  

     
    PAPER

      Pubricized:
    2022/11/25
      Vol:
    E106-A No:5
      Page(s):
    823-831

    This work presents the thermal noise analysis results of ring amplifiers in the MDAC of cyclic ADC. Ring amplifier is an alternative closed-loop structure for residual signal amplification with MDAC, and two types of ring amplifiers: pseudo-differential and fully-differential ring-amplifiers are considered for the implementation of MDAC in cyclic ADC. Theoretical analysis results show that power of thermal noise in MDAC with a pseudo-differential amplifier is much higher than that with a fully-differential ring-amplifier. SPICE simulation results with transient noise analyses also show the similar trend. Experimental prototype cyclic ADCs in 65nm CMOS technology are implemented with the same architecture and the same circuit components except for amplifiers. Comparison of the measured results of the two ADCs confirms the validity of the theoretical analysis results.

  • BayesianPUFNet: Training Sample Efficient Modeling Attack for Physically Unclonable Functions

    Hiromitsu AWANO  Makoto IKEDA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/10/31
      Vol:
    E106-A No:5
      Page(s):
    840-850

    This paper proposes a deep neural network named BayesianPUFNet that can achieve high prediction accuracy even with few challenge-response pairs (CRPs) available for training. Generally, modeling attacks are a vulnerability that could compromise the authenticity of physically unclonable functions (PUFs); thus, various machine learning methods including deep neural networks have been proposed to assess the vulnerability of PUFs. However, conventional modeling attacks have not considered the cost of CRP collection and analyzed attacks based on the assumption that sufficient CRPs were available for training; therefore, previous studies may have underestimated the vulnerability of PUFs. Herein, we show that the application of Bayesian deep neural networks that incorporate Bayesian statistics can provide accurate response prediction even in situations where sufficient CRPs are not available for learning. Numerical experiments show that the proposed model uses only half the CRP to achieve the same response prediction as that of the conventional methods. Our code is openly available on https://github.com/bayesian-puf-net/bayesian-puf-net.git.

  • A Computer-Aided Solution to Find All Feasible Schemes of Cyclic Interference Alignment for Propagation-Delay Based X Channels

    Conggai LI  Feng LIU  Xin ZHOU  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    868-870

    To obtain a full picture of potential applications for propagation-delay based X channels, it is important to obtain all feasible schemes of cyclic interference alignment including the encoder, channel instance, and decoder. However, when the dimension goes larger, theoretical analysis about this issue will become tedious and even impossible. In this letter, we propose a computer-aided solution by searching the channel space and the scheduling space, which can find all feasible schemes in details. Examples are given for some typical X channels. Computational complexity is further analyzed.

  • The Comparison of Attention Mechanisms with Different Embedding Modes for Performance Improvement of Fine-Grained Classification

    Wujian YE  Run TAN  Yijun LIU  Chin-Chen CHANG  

     
    PAPER-Core Methods

      Pubricized:
    2021/12/22
      Vol:
    E106-D No:5
      Page(s):
    590-600

    Fine-grained image classification is one of the key basic tasks of computer vision. The appearance of traditional deep convolutional neural network (DCNN) combined with attention mechanism can focus on partial and local features of fine-grained images, but it still lacks the consideration of the embedding mode of different attention modules in the network, leading to the unsatisfactory result of classification model. To solve the above problems, three different attention mechanisms are introduced into the DCNN network (like ResNet, VGGNet, etc.), including SE, CBAM and ECA modules, so that DCNN could better focus on the key local features of salient regions in the image. At the same time, we adopt three different embedding modes of attention modules, including serial, residual and parallel modes, to further improve the performance of the classification model. The experimental results show that the three attention modules combined with three different embedding modes can improve the performance of DCNN network effectively. Moreover, compared with SE and ECA, CBAM has stronger feature extraction capability. Among them, the parallelly embedded CBAM can make the local information paid attention to by DCNN richer and more accurate, and bring the optimal effect for DCNN, which is 1.98% and 1.57% higher than that of original VGG16 and Resnet34 in CUB-200-2011 dataset, respectively. The visualization analysis also indicates that the attention modules can be easily embedded into DCNN networks, especially in the parallel mode, with stronger generality and universality.

  • Compression of Vehicle and Pedestrian Detection Network Based on YOLOv3 Model

    Lie GUO  Yibing ZHAO  Jiandong GAO  

     
    PAPER-Intelligent Transportation Systems

      Pubricized:
    2022/06/22
      Vol:
    E106-D No:5
      Page(s):
    735-745

    The commonly used object detection algorithm based on convolutional neural network is difficult to meet the real-time requirement on embedded platform due to its large size of model, large amount of calculation, and long inference time. It is necessary to use model compression to reduce the amount of network calculation and increase the speed of network inference. This paper conducts compression of vehicle and pedestrian detection network by pruning and removing redundant parameters. The vehicle and pedestrian detection network is trained based on YOLOv3 model by using K-means++ to cluster the anchor boxes. The detection accuracy is improved by changing the proportion of categorical losses and regression losses for each category in the loss function because of the unbalanced number of targets in the dataset. A layer and channel pruning algorithm is proposed by combining global channel pruning thresholds and L1 norm, which can reduce the time cost of the network layer transfer process and the amount of computation. Network layer fusion based on TensorRT is performed and inference is performed using half-precision floating-point to improve the speed of inference. Results show that the vehicle and pedestrian detection compression network pruned 84% channels and 15 Shortcut modules can reduce the size by 32% and the amount of calculation by 17%. While the network inference time can be decreased to 21 ms, which is 1.48 times faster than the network pruned 84% channels.

  • Clustering-Based Neural Network for Carbon Dioxide Estimation

    Conghui LI  Quanlin ZHONG  Baoyin LI  

     
    LETTER-Intelligent Transportation Systems

      Pubricized:
    2022/08/01
      Vol:
    E106-D No:5
      Page(s):
    829-832

    In recent years, the applications of deep learning have facilitated the development of green intelligent transportation system (ITS), and carbon dioxide estimation has been one of important issues in green ITS. Furthermore, the carbon dioxide estimation could be modelled as the fuel consumption estimation. Therefore, a clustering-based neural network is proposed to analyze clusters in accordance with fuel consumption behaviors and obtains the estimated fuel consumption and the estimated carbon dioxide. In experiments, the mean absolute percentage error (MAPE) of the proposed method is only 5.61%, and the performance of the proposed method is higher than other methods.

  • Effective Language Representations for Danmaku Comment Classification in Nicovideo

    Hiroyoshi NAGAO  Koshiro TAMURA  Marie KATSURAI  

     
    PAPER

      Pubricized:
    2023/01/16
      Vol:
    E106-D No:5
      Page(s):
    838-846

    Danmaku commenting has become popular for co-viewing on video-sharing platforms, such as Nicovideo. However, many irrelevant comments usually contaminate the quality of the information provided by videos. Such an information pollutant problem can be solved by a comment classifier trained with an abstention option, which detects comments whose video categories are unclear. To improve the performance of this classification task, this paper presents Nicovideo-specific language representations. Specifically, we used sentences from Nicopedia, a Japanese online encyclopedia of entities that possibly appear in Nicovideo contents, to pre-train a bidirectional encoder representations from Transformers (BERT) model. The resulting model named Nicopedia BERT is then fine-tuned such that it could determine whether a given comment falls into any of predefined categories. The experiments conducted on Nicovideo comment data demonstrated the effectiveness of Nicopedia BERT compared with existing BERT models pre-trained using Wikipedia or tweets. We also evaluated the performance of each model in an additional sentiment classification task, and the obtained results implied the applicability of Nicopedia BERT as a feature extractor of other social media text.

  • Post-Processing of Iterative Estimation and Cancellation Scheme for Clipping Noise in OFDM Systems

    Kee-Hoon KIM  Chanki KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/09/30
      Vol:
    E106-B No:4
      Page(s):
    352-358

    Clipping is an efficient and simple method that can reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, clipping causes in-band distortion referred to as clipping noise. To resolve this problem, a novel iterative estimation and cancellation (IEC) scheme for clipping noise is one of the most popular schemes because it can significantly improve the performance of clipped OFDM systems. However, IEC exploits detected symbols at the receiver to estimate the clipping noise in principle and the detected symbols are not the sufficient statistic in terms of estimation theory. In this paper, we propose the post-processing technique of IEC, which fully exploits given sufficient statistic at the receiver and thus further enhances the performance of a clipped OFDM system as verified by simulations.

  • CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy

    Daiki NISHIYAMA  Kazuto FUKUCHI  Youhei AKIMOTO  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    523-537

    In real world applications of multiclass classification models, misclassification in an important class (e.g., stop sign) can be significantly more harmful than in other classes (e.g., no parking). Thus, it is crucial to improve the recall of an important class while maintaining overall accuracy. For this problem, we found that improving the separation of important classes relative to other classes in the feature space is effective. Existing methods that give a class-sensitive penalty for cross-entropy loss do not improve the separation. Moreover, the methods designed to improve separations between all classes are unsuitable for our purpose because they do not consider the important classes. To achieve the separation, we propose a loss function that explicitly gives loss for the feature space, called class-sensitive additive angular margin (CAMRI) loss. CAMRI loss is expected to reduce the variance of an important class due to the addition of a penalty to the angle between the important class features and the corresponding weight vectors in the feature space. In addition, concentrating the penalty on only the important class hardly sacrifices separating the other classes. Experiments on CIFAR-10, GTSRB, and AwA2 showed that CAMRI loss could improve the recall of a specific class without sacrificing accuracy. In particular, compared with GTSRB's second-worst class recall when trained with cross-entropy loss, CAMRI loss improved recall by 9%.

  • TEBAS: A Time-Efficient Balance-Aware Scheduling Strategy for Batch Processing Jobs

    Zijie LIU  Can CHEN  Yi CHENG  Maomao JI  Jinrong ZOU  Dengyin ZHANG  

     
    LETTER-Software Engineering

      Pubricized:
    2022/12/28
      Vol:
    E106-D No:4
      Page(s):
    565-569

    Common schedulers for long-term running services that perform task-level optimization fail to accommodate short-living batch processing (BP) jobs. Thus, many efficient job-level scheduling strategies are proposed for BP jobs. However, the existing scheduling strategies perform time-consuming objective optimization which yields non-negligible scheduling delay. Moreover, they tend to assign BP jobs in a centralized manner to reduce monetary cost and synchronization overhead, which can easily cause resource contention due to the task co-location. To address these problems, this paper proposes TEBAS, a time-efficient balance-aware scheduling strategy, which spreads all tasks of a BP job into the cluster according to the resource specifications of a single task based on the observation that computing tasks of a BP job commonly possess similar features. The experimental results show the effectiveness of TEBAS in terms of scheduling efficiency and load balancing performance.

81-100hit(2832hit)