The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

2401-2420hit(8214hit)

  • Extended Feature Descriptor and Vehicle Motion Model with Tracking-by-Detection for Pedestrian Active Safety

    Hirokatsu KATAOKA  Kimimasa TAMURA  Kenji IWATA  Yutaka SATOH  Yasuhiro MATSUI  Yoshimitsu AOKI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:2
      Page(s):
    296-304

    The percentage of pedestrian deaths in traffic accidents is on the rise in Japan. In recent years, there have been calls for measures to be introduced to protect vulnerable road users such as pedestrians and cyclists. In this study, a method to detect and track pedestrians using an in-vehicle camera is presented. We improve the technology of detecting pedestrians by using the highly accurate images obtained with a monocular camera. In the detection step, we employ ECoHOG as the feature descriptor; it accumulates the integrated gradient intensities. In the tracking step, we apply an effective motion model using optical flow and the proposed feature descriptor ECoHOG in a tracking-by-detection framework. These techniques were verified using images captured on real roads.

  • Parallel-Snake with Balloon Force for Lane Detection

    Xiangyang LI  Xiangzhong FANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    349-352

    Lane detection plays an important role in Driver Assistance Systems and Autonomous Vehicle System. In this paper, we propose a parallel-snake model combined with balloon force for lane detection. Parallel-snake is defined as two open active contours with parallel constrain. The lane boundaries on the left and right sides are assumed as parallel curves, parallel-snake is deformed to estimate these two boundaries. As lane regions between left and right boundaries usually have low gradient, snake will lose external force on these regions. Furthermore, inspired by balloon active contour model, the balloon force is introduced into parallel-snake to expand two parallel curves from center of road to the left and right lane boundaries. Different from closed active contour, stretching force is adopted to prevent the head and tail of snake from converging together. The experimental results on three different datasets show that parallel-snake model can work well on images with shadows and handle the lane with broken boundaries as the parallel property.

  • Analytical Study for Performance Evaluation of Signal Detection Scheme to Allow the Coexistence of Additional and Existing Radio Communication Systems

    Kanshiro KASHIKI  I-Te LIN  Tomoki SADA  Toshihiko KOMINE  Shingo WATANABE  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    295-304

    This paper describes an analytical study of performance of a proposed signal detection scheme that will allow coexistence of an additional radio communication system (generally, secondary system) in the service area where the existing communication system (primary system) is operated. Its performance characteristics are derived by an analytical method based on stochastic theory, which is subsequently validated by software simulation. The main purpose of the detection scheme is to protect the primary system from the secondary system. In such a situation, the signals of the primary system and secondary system may be simultaneously received in the signal detector. One application of such a scheme is D-to-D (Device-to-Device) communication, whose system concept including the detection scheme is briefly introduced. For improved secondary signal detection, we propose the signal cancellation method of the primary system and the feature detection method of the secondary system signal. We evaluate the performance characteristics of the detection scheme in terms of “probability of correct detection”. We reveal that an undesired random component is produced in the feature detection procedure when two different signals are simultaneously received, which degrades the detection performance. Such undesired component is included in the analytical equations. We also clarify that the cancellation scheme improves the performance, when the power ratio of the primary signal to secondary signal is higher than 20-22dB.

  • Discrete Abstraction for a Class of Stochastic Hybrid Systems Based on Bounded Bisimulation

    Koichi KOBAYASHI  Yasuhito FUKUI  Kunihiko HIRAISHI  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    459-467

    A stochastic hybrid system can express complex dynamical systems such as biological systems and communication networks, but computation for analysis and control is frequently difficult. In this paper, for a class of stochastic hybrid systems, a discrete abstraction method in which a given system is transformed into a finite-state system is proposed based on the notion of bounded bisimulation. In the existing discrete abstraction method based on bisimulation, a computational procedure is not in general terminated. In the proposed method, only the behavior for the finite time interval is expressed as a finite-state system, and termination is guaranteed. Furthermore, analysis of genetic toggle switches is also discussed as an application.

  • Advanced QRD-M Detection with Iterative Scheme in the MIMO-OFDM System

    Hwan-Jun CHOI  Hyoung-Kyu SONG  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    340-343

    In this letter, advanced QRD-M detection using iterative scheme is proposed. This scheme has a higher diversity degree than conventional QRD-M detection. According to the simulation results, the performance of proposed QRD-M detection is 0.5dB to 5.5dB better than the performance of conventional QRD-M detection and average iteration time is approximately 1 in the value of M = 1, 2, 3. Therefore, the proposed QRD-M detection has better performance than conventional QRD-M detection, particularly in a high SNR environment and low modulation order.

  • Accurate Permittivity Estimation Method for 3-Dimensional Dielectric Object with FDTD-Based Waveform Correction

    Ryunosuke SOUMA  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:2
      Page(s):
    123-127

    Ultra-wideband pulse radar exhibits high range resolution, and excellent capability in penetrating dielectric media. With that, it has great potential as an innovative non-destructive inspection technique for objects such as human body or concrete walls. For suitability in such applications, we have already proposed an accurate permittivity estimation method for a 2-dimensional dielectric object of arbitrarily shape and clear boundary. In this method, the propagation path estimation inside the dielectric object is calculated, based on the geometrical optics (GO) approximation, where the dielectric boundary points and its normal vectors are directly reproduced by the range point migration (RPM) method. In addition, to compensate for the estimation error incurred using the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated, where an initial guess of the relative permittivity and dielectric boundary are employed for data regeneration. This study introduces the 3-dimensional extension of the above permittivity estimation method, aimed at practical uses, where only the transmissive data are effectively extracted, based on quantitative criteria that considers the spatial relationship between antenna locations and the dielectric object position. Results from a numerical simulation verify that our proposed method accomplishes accurate permittivity estimations even for 3-dimensional dielectric medium of wavelength size.

  • A Novel Method for the Bi-directional Transformation between Human Living Activities and Appliance Power Consumption Patterns

    Xinpeng ZHANG  Yusuke YAMADA  Takekazu KATO  Takashi MATSUYAMA  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:2
      Page(s):
    275-284

    This paper describes a novel method for the bi-directional transformation between the power consumption patterns of appliances and human living activities. We have been proposing a demand-side energy management system that aims to cut down the peak power consumption and save the electric energy in a household while keeping user's quality of life based on the plan of electricity use and the dynamic priorities of the appliances. The plan of electricity use could be established in advance by predicting appliance power consumption. Regarding the priority of each appliance, it changes according to user's daily living activities, such as cooking, bathing, or entertainment. To evaluate real-time appliance priorities, real-time living activity estimation is needed. In this paper, we address the problem of the bi-directional transformation between personal living activities and power consumption patterns of appliances. We assume that personal living activities and appliance power consumption patterns are related via the following two elements: personal appliance usage patterns, and the location of people. We first propose a Living Activity - Power Consumption Model as a generative model to represent the relationship between living activities and appliance power consumption patterns, via the two elements. We then propose a method for the bidirectional transformation between living activities and appliance power consumption patterns on the model, including the estimation of personal living activities from measured appliance power consumption patterns, and the generation of appliance power consumption patterns from given living activities. Experiments conducted on real daily life demonstrate that our method can estimate living activities that are almost consistent with the real ones. We also confirm through case study that our method is applicable for simulating appliance power consumption patterns. Our contributions in this paper would be effective in saving electric energy, and may be applied to remotely monitor the daily living of older people.

  • SPICE Behavioral Modeling of RF Current Injection in Wire Bundles

    Flavia GRASSI  Giordano SPADACINI  Sergio A. PIGNARI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E97-B No:2
      Page(s):
    424-431

    In this work, a measurement-based procedure aimed at deriving a behavioral model of Bulk Current Injection (BCI) probes clamped onto multi-wire cable bundles is proposed. The procedure utilizes the measurement data obtained by mounting the probe onto the calibration jig for model-parameters extraction, and 2D electromagnetic simulations to adapt such parameters to the specific characteristics of the cable bundle under analysis. Outcome of the analysis is a behavioral model which can be easily implemented into the SPICE environment. Without loss of generality, the proposed model is here used to predict the radio-frequency noise stressing the terminal units of a two-wire harness. Model accuracy in predicting the common and differential mode voltages induced by BCI at the line terminals is assessed by EM modeling and simulation of the involved injection setup by the commercial software CST Microwave Studio.

  • Self-Triggered Predictive Control with Time-Dependent Activation Costs of Mixed Logical Dynamical Systems

    Shogo NAKAO  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    476-483

    Many controllers are implemented on digital platforms as periodic control tasks. But, in embedded systems, an amount of resources are limited and the reduction of resource utilization of the control task is an important issue. Recently, much attention has been paid to a self-triggered controller, which updates control inputs aperiodically. A control task by which the self-triggered controller is implemented skips the release of jobs if the degradation of control performances by the skipping can be allowed. Each job computes not only the updated control inputs but also the next update instant and the control task is in the sleep state until the instant. Thus the resource utilization is reduced. In this paper, we consider self-triggered predictive control (stPC) of mixed logical dynamical (MLD) systems. We introduce a binary variable which determines whether the control inputs are updated or not. Then, we formulate an stPC problem of mixed logical dynamical systems, where activation costs are time-dependent to represent the preference of activations of the control task. Both the control inputs and the next update instant are computed by solving a mixed integer programming problem. The proposed stPC can reduce the number of updates with guaranteeing stability of the controlled system.

  • Pose-Free Face Swapping Based on a Deformable 3D Shape Morphable Model

    Yuan LIN  Shengjin WANG  

     
    PAPER-Computer Graphics

      Vol:
    E97-D No:2
      Page(s):
    305-314

    Traditional face swapping technologies require that the faces of source images and target images have similar pose and appearance (usually frontal). For overcoming this limit in applications this paper presents a pose-free face swapping method based on personalized 3D face modeling. By using a deformable 3D shape morphable model, a photo-realistic 3D face is reconstructed from a single frontal view image. With the aid of the generated 3D face, a virtual source image of the person with the same pose as the target face can be rendered, which is used as a source image for face swapping. To solve the problem of illumination difference between the target face and the source face, a color transfer merging method is proposed. It outperforms the original color transfer method in dealing with the illumination gap problem. An experiment shows that the proposed face reconstruction method is fast and efficient. In addition, we have conducted experiments of face swapping in a variety of scenarios such as children's story book, role play, and face de-identification stripping facial information used for identification, and promising results have been obtained.

  • Performance Enhancements in MIL-STD-188-220-Based Tactical Communication Systems

    Sewon HAN  Byung-Seo KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E97-A No:2
      Page(s):
    713-716

    MIL-STD-188-220 standard specifies protocols for narrowband and voice-based tactical communication devices. However, the future tactical communication devices require broadband services for accurate command and control. In this letter, the enhancement for MIL-STD-188-220-based systems is proposed for use over wideband channels. Unlike the operation defined in the standard, transmissions in Bump-Slots uses P-Persistence method and give the higher p to stations experiencing longer delays. The proposed method is extensively evaluated and the performance enhancements are proved.

  • Efficient Pedestrian Detection Using Multi-Scale HOG Features with Low Computational Complexity

    Soojin KIM  Kyeongsoon CHO  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:2
      Page(s):
    366-369

    In this paper, an efficient method to reduce computational complexity for pedestrian detection is presented. Since trilinear interpolation is not used, the amount of required operations for histogram of oriented gradient (HOG) feature calculation is significantly reduced. By calculating multi-scale HOG features with integral HOG in a two-stage approach, both high detection rate and speed are achieved in the proposed method.

  • Time-Varying AR Spectral Estimation Using an Indefinite Matrix-Based Sliding Window Fast Linear Prediction

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    547-556

    A method for efficiently estimating the time-varying spectra of nonstationary autoregressive (AR) signals is derived using an indefinite matrix-based sliding window fast linear prediction (ISWFLP). In the linear prediction, the indefinite matrix plays a very important role in sliding an exponentially weighted finite-length window over the prediction error samples. The resulting ISWFLP algorithm successively estimates the time-varying AR parameters of order N at a computational complexity of O(N) per sample. The performance of the AR parameter estimation is superior to the performances of the conventional techniques, including the Yule-Walker, covariance, and Burg methods. Consequently, the ISWFLP-based AR spectral estimation method is able to rapidly track variations in the frequency components with a high resolution and at a low computational cost. The effectiveness of the proposed method is demonstrated by the spectral analysis results of a sinusoidal signal and a speech signal.

  • A Mode Mapping and Optimized MV Conjunction Based H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing

    Lei SUN  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    501-509

    Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.

  • Weighted Hard Combination for Cooperative Spectrum Sensing under Noise Uncertainty

    Ruyuan ZHANG  Yafeng ZHAN  Yukui PEI  Jianhua LU  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    275-282

    Cooperative spectrum sensing is an effective approach that utilizes spatial diversity gain to improve detection performance. Most studies assume that the background noise is exactly known. However, this is not realistic because of noise uncertainty which will significantly degrade the performance. A novel weighted hard combination algorithm with two thresholds is proposed by dividing the whole range of the local test statistic into three regions called the presence, uncertainty and absence regions, instead of the conventional two regions. The final decision is made by weighted combination at the common receiver. The key innovation is the full utilization of the information contained in the uncertainty region. It is worth pointing out that the weight coefficient and the local target false alarm probability, which determines the two thresholds, are also optimized to minimize the total error rate. Numerical results show this algorithm can significantly improve the detection performance, and is more robust to noise uncertainty than the existing algorithms. Furthermore, the performance of this algorithm is not sensitive to the local target false alarm probability at low SNR. Under sufficiently high SNR condition, this algorithm reduces to the improved one-out-of-N rule. As noise uncertainty is unavoidable, this algorithm is highly practical.

  • Resolution of the Gibbs Phenomenon for Fractional Fourier Series

    Hongqing ZHU  Meiyu DING  Daqi GAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    572-586

    The nth partial sums of a classical Fourier series have large oscillations near the jump discontinuities. This behaviour is the well-known Gibbs phenomenon. Recently, the inverse polynomial reconstruction method (IPRM) has been successfully implemented to reconstruct piecewise smooth functions by reducing the effects of the Gibbs phenomenon for Fourier series. This paper addresses the 2-D fractional Fourier series (FrFS) using the same approach used with the 1-D fractional Fourier series and finds that the Gibbs phenomenon will be observed in 1-D and 2-D fractional Fourier series expansions for functions at a jump discontinuity. The existing IPRM for resolution of the Gibbs phenomenon for 1-D and 2-D FrFS appears to be the same as that used for Fourier series. The proof of convergence provides theoretical basis for both 1-D and 2-D IPRM to remove Gibbs phenomenon. Several numerical examples are investigated. The results indicate that the IPRM method completely eliminates the Gibbs phenomenon and gives exact reconstruction results.

  • Local Reconstruction Error Alignment: A Fast Unsupervised Feature Selection Algorithm for Radar Target Clustering

    Jianqiao WANG  Yuehua LI  Jianfei CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    357-360

    Observed samples in wideband radar are always represented as nonlinear points in high dimensional space. In this paper, we consider the feature selection problem in the scenario of wideband radar target clustering. Inspired by manifold learning, we propose a novel feature selection algorithm, called Local Reconstruction Error Alignment (LREA), to select the features that can best preserve the underlying manifold structure. We first select the features that minimize the reconstruction error in every neighborhood. Then, we apply the alignment technique to extend the local optimal feature sequence to a global unique feature sequence. Experiments demonstrate the effectiveness of our proposed method.

  • Eigen Analysis of Moment Vector Equation for Interacting Chaotic Elements Described by Nonlinear Boltzmann Equation

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E97-A No:1
      Page(s):
    331-338

    A macroscopic structure was analyzed for a system comprising multiple elements in which the dynamics is affected by their distribution. First, a nonlinear Boltzmann equation, which has an integration term with respect to the distribution of the elements, was derived. Next, the moment vector equation (MVE) for the Boltzmann equation was derived. The average probability density function (pdf) in a steady state was derived using eigen analysis of the coefficient matrix of the MVE. The macroscopic structure of the system and the mechanism that provides the average pdf and the transient response were then analyzed using eigen analysis. Evaluation of the average pdf and transient response showed that using eigen analysis is effective for analyzing not only the transient and stationary properties of the system but also the macroscopic structure and the mechanism providing the properties.

  • Unified Coprocessor Architecture for Secure Key Storage and Challenge-Response Authentication

    Koichi SHIMIZU  Daisuke SUZUKI  Toyohiro TSURUMARU  Takeshi SUGAWARA  Mitsuru SHIOZAKI  Takeshi FUJINO  

     
    PAPER-Hardware Based Security

      Vol:
    E97-A No:1
      Page(s):
    264-274

    In this paper we propose a unified coprocessor architecture that, by using a Glitch PUF and a block cipher, efficiently unifies necessary functions for secure key storage and challenge-response authentication. Based on the fact that a Glitch PUF uses a random logic for the purpose of generating glitches, the proposed architecture is designed around a block cipher circuit such that its round functions can be shared with a Glitch PUF as a random logic. As a concrete example, a circuit structure using a Glitch PUF and an AES circuit is presented, and evaluation results for its implementation on FPGA are provided. In addition, a physical random number generator using the same circuit is proposed. Evaluation results by the two major test suites for randomness, NIST SP 800-22 and Diehard, are provided, proving that the physical random number generator passes the test suites.

  • Optimal Transform Order of Fractional Fourier Transform for Decomposition of Overlapping Ultrasonic Signals

    Zhenkun LU  Cui YANG  Gang WEI  

     
    LETTER-Ultrasonics

      Vol:
    E97-A No:1
      Page(s):
    393-396

    The separation time-overlapping ultrasound signals is necessary to obtain accurate estimate of transit time and material properties. In this letter, a method to determine the optimal transform order of fractional Fourier transform (FRFT) for decomposition of overlapping ultrasonic signals is proposed. The optimal transform order is obtained by minimizing the mean square error (MSE) between the output and the reference signal. Furthermore, windowing in FRFT domain is discussed. Numerical simulation results show the performances of the proposed method in separating signals overlapping in time.

2401-2420hit(8214hit)