The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

4261-4280hit(8214hit)

  • A Reconfigurable Functional Unit with Conditional Execution for Multi-Exit Custom Instructions

    Hamid NOORI  Farhad MEHDIPOUR  Koji INOUE  Kazuaki MURAKAMI  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    497-508

    Encapsulating critical computation subgraphs as application-specific instruction set extensions is an effective technique to enhance the performance of embedded processors. However, the addition of custom functional units to the base processor is required to support the execution of these custom instructions. Although automated tools have been developed to reduce the long design time needed to produce a new extensible processor for each application, short time-to-market, significant non-recurring engineering and design costs are issues. To address these concerns, we introduce an adaptive extensible processor in which custom instructions are generated and added after chip-fabrication. To support this feature, custom functional units (CFUs) are replaced by a reconfigurable functional unit (RFU). The proposed RFU is based on a matrix of functional units which is multi-cycle with the capability of conditional execution. A quantitative approach is utilized to propose an efficient architecture for the RFU and fix its constraints. To generate more effective custom instructions, they are extended over basic blocks and hence, multiple exits custom instructions are proposed. Conditional execution has been added to the RFU to support the multi-exit feature of custom instructions. Experimental results show that multi-exit custom instructions enhance the performance by an average of 67% compared to custom instructions limited to one basic block. A maximum speedup of 4.7, compared to a general embedded processor, and an average speedup of 1.85 was achieved on MiBench benchmark suite.

  • A New Caching Technique to Support Conjunctive Queries in P2P DHT

    Koji KOBATAKE  Shigeaki TAGASHIRA  Satoshi FUJITA  

     
    PAPER-Computer Systems

      Vol:
    E91-D No:4
      Page(s):
    1023-1031

    P2P DHT (Peer-to-Peer Distributed Hash Table) is one of typical techniques for realizing an efficient management of shared resources distributed over a network and a keyword search over such networks in a fully distributed manner. In this paper, we propose a new method for supporting conjunctive queries in P2P DHT. The basic idea of the proposed technique is to share a global information on past trials by conducting a local caching of search results for conjunctive queries and by registering the fact to the global DHT. Such a result caching is expected to significantly reduce the amount of transmitted data compared with conventional schemes. The effect of the proposed method is experimentally evaluated by simulation. The result of experiments indicates that by using the proposed method, the amount of returned data is reduced by 60% compared with conventional P2P DHT which does not support conjunctive queries.

  • Performance Evaluation of Adaptive Probabilistic Search in P2P Networks

    Haoxiang ZHANG  Lin ZHANG  Xiuming SHAN  Victor O.K. LI  

     
    LETTER-Network

      Vol:
    E91-B No:4
      Page(s):
    1172-1175

    The overall performance of P2P-based file sharing applications is becoming increasingly important. Based on the Adaptive Resource-based Probabilistic Search algorithm (ARPS), which was previously proposed by the authors, a novel probabilistic search algorithm with QoS guarantees is proposed in this letter. The algorithm relies on generating functions to satisfy the user's constraints and to exploit the power-law distribution in the node degree. Simulation results demonstrate that it performs well under various P2P scenarios. The proposed algorithm provides guarantees on the search performance perceived by the user while minimizing the search cost. Furthermore, it allows different QoS levels, resulting in greater flexibility and scalability.

  • Hardware Neural Network for a Visual Inspection System

    Seungwoo CHUN  Yoshihiro HAYAKAWA  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    935-942

    The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.

  • Full-Rate STBCs from Coordinate Interleaved Orthogonal Designs in Time-Selective Fading Channels

    Hoojin LEE  Jeffrey G. ANDREWS  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1185-1189

    Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.

  • Distributed Fair Access Point Selection for Multi-Rate IEEE 802.11 WLANs

    Huazhi GONG  Kitae NAHM  JongWon KIM  

     
    LETTER-Networks

      Vol:
    E91-D No:4
      Page(s):
    1193-1196

    In IEEE 802.11 networks, the access point (AP) selection based on the strongest signal strength often results in the extremely unfair bandwidth allocation among mobile users (MUs). In this paper, we propose a distributed AP selection algorithm to achieve a fair bandwidth allocation for MUs. The proposed algorithm gradually balances the AP loads based on max-min fairness for the available multiple bit rate choices in a distributed manner. We analyze the stability and overhead of the proposed algorithm, and show the improvement of the fairness via computer simulation.

  • Noninvasive Femur Bone Volume Estimation Based on X-Ray Attenuation of a Single Radiographic Image and Medical Knowledge

    Supaporn KIATTISIN  Kosin CHAMNONGTHAI  

     
    PAPER-Biological Engineering

      Vol:
    E91-D No:4
      Page(s):
    1176-1184

    Bone Mineral Density (BMD) is an indicator of osteoporosis that is an increasingly serious disease, particularly for the elderly. To calculate BMD, we need to measure the volume of the femur in a noninvasive way. In this paper, we propose a noninvasive bone volume measurement method using x-ray attenuation on radiography and medical knowledge. The absolute thickness at one reference pixel and the relative thickness at all pixels of the bone in the x-ray image are used to calculate the volume and the BMD. First, the absolute bone thickness of one particular pixel is estimated by the known geometric shape of a specific bone part as medical knowledge. The relative bone thicknesses of all pixels are then calculated by x-ray attenuation of each pixel. Finally, given the absolute bone thickness of the reference pixel, the absolute bone thickness of all pixels is mapped. To evaluate the performance of the proposed method, experiments on 300 subjects were performed. We found that the method provides good estimations of real BMD values of femur bone. Estimates shows a high linear correlation of 0.96 between the volume Bone Mineral Density (vBMD) of CT-SCAN and computed vBMD (all P<0.001). The BMD results reveal 3.23% difference in volume from the BMD of CT-SCAN.

  • Impact of Channel Estimation Error on the Sum-Rate in MIMO Broadcast Channels with User Selection

    Yupeng LIU  Ling QIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    955-958

    We investigate the MIMO broadcast channels with imperfect channel knowledge due to estimation error and much more users than transmit antennas to exploit multiuser diversity. The channel estimation error causes the interference among users, resulting in the sum-rate loss. A tight upper bound of this sum-rate loss based on zeroforcing beamforming is derived theoretically. This bound only depends on the channel estimation quality and transmit antenna number, but not on the user number. Based on this upper bound, we show this system maintains full multiuser diversity, and always benefits from the increasing transmit power.

  • Fluxonics and Superconducting Electronics in Europe

    Horst ROGALLA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    272-279

    Superconductivity and superconducting electronics have quite a prominent place in the European research environment and can look back onto a successful history. In recent years the European Framework programs helped to enhance the interaction between the different national research institutions, universities and industry. For applications of superconductivity this was accomplished by the European Network of Excellence SCENET and its sister organization ESAS. In this context a virtual European foundry network was established (Fluxonics), which forms a platform for the superconducting electronics activities in Europe and realizes support for the design and the fabrication of superconducting circuits for research laboratories and industry. Lately quite some development on the digital side and the cooling of superconducting electronics devices has taken place in Europe; most of it within the Fluxonics network. Some of these advances will be reported in this overview article.

  • Transformed-Domain Mode Selection for H.264 Intra-Prediction Improvement

    Yung-Chiang WEI  Jar-Ferr YANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:3
      Page(s):
    825-835

    In this paper, a fast mode decision method for intra-prediction is proposed to reduce the computational complexity of H.264/AVC encoders. With edge information, we propose a novel fast estimation algorithm to reduce the computation overhead of H.264/AVC for mode selection, where the edge direction of each coding block is detected from only part of the transformed coefficients. Hence, the computation complexity is greatly reduced. Experimental results show that the proposed fast mode decision method can eliminate about 81.34% encoding time for all intra-frame sequences with acceptable degradation of averaged PSNR and bitrates.

  • Study on Expansion of Convolutional Compactors over Galois Field

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    706-712

    Convolutional compactors offer a promising technique of compacting test responses. In this study we expand the architecture of convolutional compactor onto a Galois field in order to improve compaction ratio as well as reduce X-masking probability, namely, the probability that an error is masked by unknown values. While each scan chain is independently connected by EOR gates in the conventional arrangement, the proposed scheme treats q signals as an element over GF(2q), and the connections are configured on the same field. We show the arrangement of the proposed compactors and the equivalent expression over GF(2). We then evaluate the effectiveness of the proposed expansion in terms of X-masking probability by simulations with uniform distribution of X-values, as well as reduction of hardware overheads. Furthermore, we evaluate a multi-weight arrangement of the proposed compactors for non-uniform X distributions.

  • Study on Test Data Reduction Combining Illinois Scan and Bit Flipping

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    720-725

    In this paper, we propose a scheme for test data reduction which uses broadcaster along with bit-flipping circuit. The proposed scheme can reduce test data without degrading the fault coverage of ATPG, and without requiring or modifying the arrangement of CUT. We theoretically analyze the test data size by the proposed scheme. The numerical examples obtained by the analysis and experimental results show that our scheme can effectively reduce test data if the care-bit rate is not so much low according to the number of scan chains. We also discuss the hybrid scheme of random-pattern-based flipping and single-input-based flipping.

  • Improved Noise Reduction with Packet Loss Recovery Based on Post-Filtering over IP Networks

    Jinsul KIM  Hyunwoo LEE  Won RYU  Seungho HAN  Minsoo HAHN  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:3
      Page(s):
    975-979

    This letter mainly focuses on improving current noise reduction methods to solve the critical speech distortion problems with robust noise reduction in noisy speech signals for speech enhancement over IP networks. For robust noise reduction with packet loss recovery, we propose a novel optimized Wiener filtering technique that uses the estimated SNR (Signal-to-Noise Ratio) with packet loss recovery method which is applied as post-filtering over IP-networks. Simulation results demonstrate that the proposed scheme provides better reduction and recovery rates with considering packet loss and SNR environment than other methods.

  • Test Data Compression for Scan-Based BIST Aiming at 100x Compression Rate

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  Tatsuru MATSUO  Takahisa HIRAIDE  Hideaki KONISHI  Michiaki EMORI  Takashi AIKYO  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    726-735

    We developed test data compression scheme for scan-based BIST, aiming to compress test stimuli and responses by more than 100 times. As scan-BIST architecture, we adopt BIST-Aided Scan Test (BAST), and combines four techniques: the invert-and-shift operation, run-length compression, scan address partitioning, and LFSR pre-shifting. Our scheme achieved a 100x compression rate in environments where Xs do not occur without reducing the fault coverage of the original ATPG vectors. Furthermore, we enhanced the masking logic to reduce data for X-masking so that test data is still compressed to 1/100 in a practical environment where Xs occur. We applied our scheme to five real VLSI chips, and the technique compressed the test data by 100x for scan-based BIST.

  • Building an Effective Speech Corpus by Utilizing Statistical Multidimensional Scaling Method

    Goshu NAGINO  Makoto SHOZAKAI  Tomoki TODA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Corpus

      Vol:
    E91-D No:3
      Page(s):
    607-614

    This paper proposes a technique for building an effective speech corpus with lower cost by utilizing a statistical multidimensional scaling method. The statistical multidimensional scaling method visualizes multiple HMM acoustic models into two-dimensional space. At first, a small number of voice samples per speaker is collected; speaker adapted acoustic models trained with collected utterances, are mapped into two-dimensional space by utilizing the statistical multidimensional scaling method. Next, speakers located in the periphery of the distribution, in a plotted map are selected; a speech corpus is built by collecting enough voice samples for the selected speakers. In an experiment for building an isolated-word speech corpus, the performance of an acoustic model trained with 200 selected speakers was equivalent to that of an acoustic model trained with 533 non-selected speakers. It means that a cost reduction of more than 62% was achieved. In an experiment for building a continuous word speech corpus, the performance of an acoustic model trained with 500 selected speakers was equivalent to that of an acoustic model trained with 1179 non-selected speakers. It means that a cost reduction of more than 57% was achieved.

  • A Robust and Non-invasive Fetal Electrocardiogram Extraction Algorithm in a Semi-Blind Way

    Yalan YE  Zhi-Lin ZHANG  Jia CHEN  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E91-A No:3
      Page(s):
    916-920

    Fetal electrocardiogram (FECG) extraction is of vital importance in biomedical signal processing. A promising approach is blind source extraction (BSE) emerging from the neural network fields, which is generally implemented in a semi-blind way. In this paper, we propose a robust extraction algorithm that can extract the clear FECG as the first extracted signal. The algorithm exploits the fact that the FECG signal's kurtosis value lies in a specific range, while the kurtosis values of other unwanted signals do not belong to this range. Moreover, the algorithm is very robust to outliers and its robustness is theoretically analyzed and is confirmed by simulation. In addition, the algorithm can work well in some adverse situations when the kurtosis values of some source signals are very close to each other. The above reasons mean that the algorithm is an appealing method which obtains an accurate and reliable FECG.

  • Single Sinusoidal Frequency Estimation Using Second and Fourth Order Linear Prediction Errors

    Kenneth Wing-Kin LUI  Hing-Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:3
      Page(s):
    875-878

    By utilizing the second and fourth order linear prediction errors, a novel estimator for a single noisy sinusoid is devised. The frequency estimate is obtained from a solving a cubic equation and a simple root selection procedure is provided. Asymptotical variance of the estimated frequency is derived and confirmed by computer simulations. It is demonstrated that the proposed estimator is superior to the reformed Pisarenko harmonic decomposer, which is the improved version of Pisarenko harmonic decomposer.

  • Accurate Bit-Error Rate Evaluation for TH-PPM Systems in Nakagami Fading Channels Using Moment Generating Functions

    Bin LIANG  Erry GUNAWAN  Choi Look LAW  Kah Chan TEH  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    922-926

    Analytical expressions based on the Gauss-Chebyshev quadrature (GCQ) rule technique are derived to evaluate the bit-error rate (BER) for the time-hopping pulse position modulation (TH-PPM) ultra-wide band (UWB) systems under a Nakagami-m fading channel. The analyses are validated by the simulation results and adopted to assess the accuracy of the commonly used Gaussian approximation (GA) method. The influence of the fading severity on the BER performance of TH-PPM UWB system is investigated.

  • Scheduling Power-Constrained Tests through the SoC Functional Bus

    Fawnizu Azmadi HUSSIN  Tomokazu YONEDA  Alex ORAILOLU  Hideo FUJIWARA  

     
    PAPER-High-Level Testing

      Vol:
    E91-D No:3
      Page(s):
    736-746

    This paper proposes a test methodology for core-based testing of System-on-Chips by utilizing the functional bus as a test access mechanism. The functional bus is used as a transportation channel for the test stimuli and responses from a tester to the cores under test (CUT). To enable test concurrency, local test buffers are added to all CUTs. In order to limit the buffer area overhead while minimizing the test application time, we propose a packet-based scheduling algorithm called PAcket Set Scheduling (PASS), which finds the complete packet delivery schedule under a given power constraint. The utilization of test packets, consisting of a small number of bits of test data, for test data delivery allow an efficient sharing of bus bandwidth with the help of an effective buffer-based test architecture. The experimental results show that the methodology is highly effective, especially for smaller bus widths, compared to previous approaches that do not use the functional bus.

  • Local Peak Enhancement for In-Car Speech Recognition in Noisy Environment

    Osamu ICHIKAWA  Takashi FUKUDA  Masafumi NISHIMURA  

     
    LETTER

      Vol:
    E91-D No:3
      Page(s):
    635-639

    The accuracy of automatic speech recognition in a car is significantly degraded in a very low SNR (Signal to Noise Ratio) situation such as "Fan high" or "Window open". In such cases, speech signals are often buried in broadband noise. Although several existing noise reduction algorithms are known to improve the accuracy, other approaches that can work with them are still required for further improvement. One of the candidates is enhancement of the harmonic structures in human voices. However, most conventional approaches are based on comb filtering, and it is difficult to use them in practical situations, because their assumptions for F0 detection and for voiced/unvoiced detection are not accurate enough in realistic noisy environments. In this paper, we propose a new approach that does not rely on such detection. An observed power spectrum is directly converted into a filter for speech enhancement, by retaining only the local peaks considered to be harmonic structures in the human voice. In our experiments, this approach reduced the word error rate by 17% in realistic automobile environments. Also, it showed further improvement when used with existing noise reduction methods.

4261-4280hit(8214hit)