The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

6061-6080hit(8214hit)

  • Genetic Algorithm with Fuzzy Operators for Feature Subset Selection

    Basabi CHAKRABORTY  

     
    LETTER

      Vol:
    E85-A No:9
      Page(s):
    2089-2092

    Feature subset selection is an important preprocessing task for pattern recognition, machine learning or data mining applications. A Genetic Algorithm (GA) with a fuzzy fitness function has been proposed here for finding out the optimal subset of features from a large set of features. Genetic algorithms are robust but time consuming, specially GA with neural classifiers takes a long time for reasonable solution. To reduce the time, a fuzzy measure for evaluation of the quality of a feature subset is used here as the fitness function instead of classifier error rate. The computationally light fuzzy fitness function lowers the computation time of the traditional GA based algorithm with classifier accuracy as the fitness function. Simulation over two data sets shows that the proposed algorithm is efficient for selection of near optimal solution in practical problems specially in case of large feature set problems.

  • Measurement of RCS from a Dielectric Coated Cylindrical Cavity and Calculation Using IPO-EIBC

    Masato TADOKORO  Kohei HONGO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E85-C No:9
      Page(s):
    1692-1696

    The radar cross section (RCS) of a dielectric-coated cylindrical cavity was measured and the measurements were compared with those calculated according to the iterative physical optics (IPO). The IPO analysis used the equivalent-impedance boundary condition (EIBC) based on transmission-line theory which takes into account the thickness of the coating. It was consequently found that this condition is much more effective than the ordinary-impedance boundary condition based on the intrinsic impedance of the material.

  • A CMOS Reaction-Diffusion Circuit Based on Cellular-Automaton Processing Emulating the Belousov-Zhabotinsky Reaction

    Tetsuya ASAI  Yuusaku NISHIMIYA  Yoshihito AMEMIYA  

     
    LETTER

      Vol:
    E85-A No:9
      Page(s):
    2093-2096

    The Belousov-Zhabotinsky (BZ) reaction provides us important clues in controlling 2D phase-lagged stable synchronous patterns in an excitable medium. Because of the difficulty in computing reaction-diffusion systems in large systems using conventional digital processors, we here propose a cellular-automaton (CA) circuit that emulates the BZ reaction. In the circuit, a two-dimensional array of parallel processing cells is responsible for fast emulation, and its operation rate is independent of the system size. The operations of the proposed CA circuit were demonstrated by using a simulation program with integrated circuit emphasis (SPICE).

  • Active Integrated Antennas

    Peter S. HALL  Peter GARDNER  Guozhong MA  

     
    INVITED PAPER

      Vol:
    E85-B No:9
      Page(s):
    1661-1667

    Active integrated antennas are a maturing topic. Many novel configurations have been described and system designers are how investigating how the advantages of compactness and increased functionality can be exploited in applications. In this paper, the various types of integrated antennas are discussed together with possible ways of exploiting the technology. New configurations of direct conversion integrated antennas are then described in detail, which illustrate some of the possibilities inherent in the technology.

  • An Extension of Shortcut Deforestation for Accumulative List Folding

    Kazuhiko KAKEHI  Robert GLUCK  Yoshihiko FUTAMURA  

     
    PAPER-Theory and Models of Software

      Vol:
    E85-D No:9
      Page(s):
    1372-1383

    Deforestation is a well-known program transformation technique which eliminates intermediate data structures that are passed between functions. One of its weaknesses is the inability to deforest programs using accumulating parameters. We show how certain kinds of intermediate lists produced by accumulating parameters can be deforested. In this paper we introduce an accumulative variant of foldr, called rdlof, and show the composition of functions defined by foldr and rdlof. As a simplified instance of foldr and rdlof, we then examine dmap, an accumulative extension of map, and give the corresponding fusion rules. While the associated composition rules cannot capture all deforestation problems, they can handle accumulator fusion of fold- and map-style functions in a simple manner. The rules for accumulator fusion presented here can also be viewed as a restricted composition scheme for attribute grammars, which in turn may help us to bridge the gap between the attribute and functional worlds.

  • A Novel Turbo-TCM Scheme Based on Concatenated Tree Codes

    Baoming BAI  Kin Shing HO  Li PING  

     
    LETTER-Fundamental Theories

      Vol:
    E85-B No:9
      Page(s):
    1835-1837

    In this letter, we introduce a two-state turbo-TCM scheme based on the concatenated tree codes. The proposed scheme can achieve near capacity performance yet has considerably lower decoding complexity compared with other existing turbo-TCM codes.

  • Some Fixed Point Theorem for Successively Recurrent System of Set-Valued Mapping Equations

    Kazuo HORIUCHI  

     
    PAPER

      Vol:
    E85-A No:9
      Page(s):
    1988-1992

    Let us introduce n ( 2) mappings fi (i=1,2,,n) defined on complete linear metric spaces (Xi-1, ρ) (i=1,2,,n), respectively, and let fi:Xi-1 Xi be completely continuous on bounded convex closed subsets Xi-1(0) Xi-1, (i=1,2,,n 0), such that fi(Xi-1(0)) Xi(0). Moreover, let us introduce n set-valued mappings Fi : Xi-1 Xi (Xi)(the family of all non-empty closed compact subsets of Xi), (i=1,2,,n 0). Here, we have a fixed point theorem on the successively recurrent system of set-valued mapping equations: xi Fi(xi-1, fi(xi-1)), (i=1,2,,n 0). This theorem can be applied immediately to analysis of the availability of system of circular networks of channels undergone by uncertain fluctuations and to evaluation of the tolerability of behaviors of those systems. In this paper, mathematical situation and detailed proof are discussed, about this theorem.

  • Derivation of Timing Wave Expression on a PAM Signal Limited to the Nyquist Frequency

    Moon Tae PARK  Kyung Gyu CHUN  Dae Young KIM  

     
    LETTER-Transmission Systems and Transmission Equipment

      Vol:
    E85-B No:9
      Page(s):
    1838-1841

    For a baseband pulse amplitude modulation (PAM) signal limited to Nyquist frequency, mathematical derivation of the timing recovery for a fourth-law circuit followed by a band-pass filter is carried out. The results show that the derived timing wave is expressed as a function of the pulse shape entering the timing path and the bandpass filter tuned to the pulse repetition frequency.

  • Identification of Sparsely Distributed Multipath Channels for Wideband Mobile Radio Systems

    Wonjin SUNG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:9
      Page(s):
    1842-1845

    Terrestrial radio links with sparsely distributed multipath delays can be represented by a tapped-delay line with a few significant tap coefficients. This letter presents criteria and performance of identification methods that determine channel taps with significant power. In particular, a tap identification method derived from the maximum-likelihood criterion and its closed form error probabilities are presented. Performance improvement over a previously reported scheme is quantified using the derived error probabilities.

  • A New Robust Acoustic Crosstalk Cancellation Method with Sum and Difference Filter for 3D Audio System

    Lae-Hoon KIM  Jun-Seok LIM  Koeng-Mo SUNG  

     
    LETTER-Engineering Acoustics

      Vol:
    E85-A No:9
      Page(s):
    2159-2163

    In loudspeaker-based 3D audio systems, there are some acoustic crosstalk cancellation methods to enlarge the 'sweet spot' around a fixed listener position. However, these methods have common defect that most of them can be applied only to the specific narrow frequency band. In this letter, we propose the more robust acoustic crosstalk cancellation method so that we can cancel the crosstalk signal in far wider frequency band and enlarge 'sweet spot. ' For this goal, we apply a sum and difference filter to the conventional three loudspeaker-based 3D audio system.

  • Polyhedral Description of Panoramic Range Data by Stable Plane Extraction

    Caihua WANG  Hideki TANAHASHI  Hidekazu HIRAYU  Yoshinori NIWA  Kazuhiko YAMAMOTO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:9
      Page(s):
    1399-1408

    In this paper, we describe a novel technique to extract a polyhedral description from panoramic range data of a scene taken by a panoramic laser range finder. First, we introduce a reasonable noise model of the range data acquired with a laser radar range finder, and derive a simple and efficient approximate solution of the optimal fitting of a local plane in the range data under the assumed noise model. Then, we compute the local surface normals using the proposed method and extract stable planar regions from the range data by using both the distribution information of local surface normals and their spatial information in the range image. Finally, we describe a method which builds a polyhedral description of the scene using the extracted stable planar regions of the panoramic range data with 360 field of view in a polar coordinate system. Experimental results on complex real range data show the effectiveness of the proposed method.

  • Incremental Construction of Projection Generalizing Neural Networks

    Masashi SUGIYAMA  Hidemitsu OGAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E85-D No:9
      Page(s):
    1433-1442

    In many practical situations in NN learning, training examples tend to be supplied one by one. In such situations, incremental learning seems more natural than batch learning in view of the learning methods of human beings. In this paper, we propose an incremental learning method in neural networks under the projection learning criterion. Although projection learning is a linear learning method, achieving the above goal is not straightforward since it involves redundant expressions of functions with over-complete bases, which is essentially related to pseudo biorthogonal bases (or frames). The proposed method provides exactly the same learning result as that obtained by batch learning. It is theoretically shown that the proposed method is more efficient in computation than batch learning.

  • A Fragile Digital Watermarking Technique by Number Theoretic Transform

    Hideaki TAMORI  Naofumi AOKI  Tsuyoshi YAMAMOTO  

     
    LETTER-Image/Visual Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1902-1904

    This paper suggests that a watermarking technique based on the number theoretic transform (NTT) may effectively be employed for detecting alterations on lossless digital master images. Due to its fragility, the NTT-based technique is sensitive to detecting alterations, compared with that based on the discrete Fourier transform (DFT).

  • Stability Analysis for a Class of Interconnected Hybrid Systems

    Shigeru YAMAMOTO  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Vol:
    E85-A No:8
      Page(s):
    1921-1927

    In this paper, we present new stability conditions for a class of large-scale hybrid dynamical systems composed of a number of interconnected hybrid subsystems. The stability conditions are given in terms of discontinuous Lyapunov functions of the stable hybrid subsystems. Furthermore, the stability conditions are represented by LMIs (Linear Matrix Inequalities) which are computationally tractable.

  • Sound Reproduction System Including Adaptive Compensation of Temperature Fluctuation Effect for Broad-Band Sound Control

    Yosuke TATEKURA  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    PAPER-Applications of Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1851-1860

    We describe a method of compensating temperature fluctuation by a linear-time-warping processing in a sound reproduction system. This technique is applied to impulse responses of room transfer functions, to achieve a high-quality sound reproduction system, particularly one that treats high-frequency components. First, the impulse responses are measured before and after temperature fluctuation, and the former are converted to the latter by the proposed process. Next, we design inverse filters for the system, and evaluate the improvement of the reproduction accuracy and spectrum distortion. By the compensation method, we can improve the reproduction accuracy at any frequency. Moreover, we propose an adaptive algorithm for the estimation of a suitable warping ratio, using the observed signal of reproduced sound obtained at only one control point. Using the proposed algorithm, we can improve the reproduction accuracy at each control point by about 14 dB, in which a difference in temperature is 1.4.

  • Improved Wavelet Shrinkage Using Morphological Clustering Filter

    Jinsung OH  

     
    LETTER-Digital Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1962-1965

    To classify the significant wavelet coefficients into edge area and noise area, a morphological clustering filter applied to wavelet shrinkage is introduced. New methods for wavelet shrinkage using morphological clustering filter are used in noise removal, and the performance is evaluated under various noise conditions.

  • Effect of Subarray Size on Direction Estimation of Coherent Cyclostationary Signals Based on Forward-Backward Linear Prediction

    Jingmin XIN  Akira SANO  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1807-1821

    The effect of subarray size (equal to the order of the prediction model plus one) on the estimation performance of a previously proposed forward-backward linear prediction (FBLP) based cyclic method is investigated. This method incorporates an overdetermined FBLP model with a subarray scheme and is used to estimate the directions-of-arrival (DOAs) of coherent cyclostationary signals impinging on a uniform linear array (ULA) from the corresponding polynomial or spectrum formed by the prediction coefficients. However, the decorrelation is obtained at the expense of a reduced working array aperture, as it is with the spatial smoothing (SS) technique. In this paper, an analytical expression of the mean-squared-error (MSE) of the spectral peak position is derived using the linear approximation for higher signal-to-noise ratio (SNR). Then the subarray size that minimizes this approximate MSE is identified. The effect of subarray size on the DOA estimation is demonstrated and the theoretical analysis is substantiated through numerical examples.

  • Pilot-Aided Adaptive Prediction Channel Estimation in a Frequency-Nonselective Fading Channel

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:8
      Page(s):
    1552-1560

    Pilot-aided adaptive prediction channel estimation is proposed for coherent detection in a frequency-nonselective fading channel. It is an extension of the conventional weighted multi-slot averaging (WMSA) channel estimation and consists of 3 steps. A block of Np pilot symbols is periodically transmitted, each pilot block being followed by Nd data symbols to form a data slot. In the first step, the instantaneous channel gain is estimated by coherent addition of Np pilot symbols. Using the K past and K future estimated instantaneous channel gains, the second step predicts the instantaneous channel gains at the end and beginning of data slot of interest by a forward predictor and a backward predictor, respectively. The tap-weights of forward prediction and backward prediction are adaptively updated using the normalized least mean square (NLMS) algorithm. Finally, in the third step, the instantaneous channel gain at each data symbol position within the data slot of interest is estimated by simple averaging or linear interpolation using the two adaptively predicted instantaneous channel gains. The computer simulation confirms that the proposed adaptive prediction channel estimation achieves better bit error rate (BER) performance than the conventional WMSA channel estimation in a fast fading channel and/or in the presence of frequency offset between a transmitter and a receiver.

  • Multiresolution Lossless Video Coding Using Inter/Intra Frame Adaptive Prediction

    Takayuki NAKACHI  Tomoko SAWABE  Tatsuya FUJII  Tetsurou FUJII  

     
    PAPER-Image/Visual Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1822-1830

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper proposes multiresolution lossless video coding using a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet domain. The multiresolution structure based on the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. In order to increase the compression ratio, and to keep the computational cost low, the adaptive inter/intra-frame prediction is performed in the lowest wavelet transform domain. The adaptive inter/intra-frame prediction can adapt to changes in the local inter/intra-frame statistics. Experiments on digital cinema test sequences confirm effectiveness of the proposed algorithm.

  • A 3V 8-Bit 200MSPS CMOS ADC with an Improved Analog Latch and a Novel Digital Encoder

    Sanghoon JOO  Minkyu SONG  

     
    PAPER

      Vol:
    E85-C No:8
      Page(s):
    1554-1561

    In this paper, a 3 V 8-bit 200MSPS CMOS folding/interpolation Analog-to-Digital Converter is proposed. It employs an efficient architecture whose FR (Folding Rate) is 8, NFB (Number of Folding Block) is 4, and IR (Interpolating Rate) is 8. For the purpose of improving SNR, distributed track and hold circuits are included at the front end of input stage. In order to obtain a high speed and low power operation, an improved dynamic analog latch is proposed. Further, a digital encoder based on a novel thermometer algorithm and a delay error correction algorithm is proposed. The chip has been fabricated with a 0.35 µm 2-poly 3-metal n-well CMOS technology. The effective chip area is 1200 µm 800 µm and it dissipates about 210 mW at 3 V power supply. The INL is within 1 LSB and DNL is within 1 LSB, respectively. The SNR is about 43 dB, when the input frequency is 10 MHz at 200 MHz clock frequency.

6061-6080hit(8214hit)