The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

6161-6180hit(8214hit)

  • Microwave Surface Resistance Measurement Sensitivity of HTS Thin Films by Microstripline Resonator at Fundamental and Higher Resonant Modes

    Narayan D. KATARIA  Mukul MISRA  

     
    PAPER-Microwave Devices and Systems

      Vol:
    E85-C No:3
      Page(s):
    696-699

    The measurement sensitivity of microwave surface resistance, Rs, of high temperature superconducting (HTS) thin films using half-wavelength microstrip resonator with copper and HTS ground plane is analyzed for fundamental and higher order modes of the resonator. The estimated sensitivity of Rs-measurement is at least an order of magnitude greater at fundamental resonant frequency compared to when measured using higher order harmonic modes.

  • Flooding Schemes for Clustered Ad Hoc Networks

    Kenichi MASE  Yoshiyuki WADA  Nobuhito MORI  Keisuke NAKANO  Masakazu SENGOKU  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:3
      Page(s):
    605-613

    This paper presents novel flooding schemes for wireless mobile ad hoc networks. Clustering of nodes is assumed as a basic ad hoc network structure. GWF (Gateway Forwarding) and SGF (Selected Gateway Forwarding) are presented based on clustering. A new protocol, termed FGS (Flooding Gateway Selection) protocol, between a cluster head and its gateways to realize SGF is presented. It is shown that SGF significantly improves the packet delivery performance in ad hoc networks by reducing flooding traffic.

  • Iterative Demodulation and Channel Estimation of Orthogonal Signaling Formats in Asynchronous DS-CDMA Systems

    Erik G. STROM  Scott L. MILLER  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    442-451

    Iterative schemes for demodulating M-ary orthogonal signaling formats in direct-sequence code-division multiple access (DS-CDMA) systems are proposed and compared with the standard noncoherent matched filter receiver. Interference cancellation, i.e., (approximative) removal of the multiple access interference (MAI) by means of subtraction is studied. The considered system is similar to the uplink (reverse link) of an IS-95 system. Hence, the received signals from the concurrent users are asynchronous, and no pilot signals are available for channel estimation. A decision-directed algorithm is proposed for estimating the time-varying complex channel gains of a multipath channel. The receivers are evaluated on Rayleigh-fading channels and are shown to provide large capacity gains compared with the conventional receiver.

  • Size Dependent Properties of the Intrinsic Josephson Junction in Bi-Sr-Ca-Cu-O Single Crystals in External Magnetic Fields

    Nazia Jabeen ALI  Akinobu IRIE  Gin-ichiro OYA  

     
    PAPER-Novel Devices and Device Physics

      Vol:
    E85-C No:3
      Page(s):
    809-813

    The size dependent properties of the intrinsic Josephson junctions in Bi2Sr2CaCu2Oy single crystal mesas in the external magnetic field are studied. The mesas of (1-140) µm long with 7-29 junctions were fabricated and their current-voltage characteristics were measured in external magnetic field applied parallel to the CuO2 layers up to 0.16 T. In zero magnetic field, multiple resistive branches with large hysteresis were observed in the current-voltage characteristics for the fabricated mesas. Almost identical critical currents were also observed for all the junctions in each mesa. With applied magnetic field, Ic of the longer mesas showed a complex magnetic field dependence as compared to that of the short mesas (of about 1 µm in length). It was observed that the lower critical magnetic field of the junctions decreased and approached a constant value with increasing number of junctions and also with increasing length of the junctions. Similar magnetic behavior was obtained by numerical simulations based on coupled sine-Gordon equations for such stacked junctions.

  • Development of a Superconducting Analog-to-Digital Converter as a Readout for High-Resolution X-Ray Detectors Based on a Superconducting Tunnel Junction

    Takayuki OKU  Tokihiro IKEDA  Chiko OTANI  Kazuhiko KAWAI  Hiromi SATO  Hirohiko M. SHIMIZU  Hiromasa MIYASAKA  Yoshiyuki TAKIZAWA  Hiroshi WATANABE  Wataru OOTANI  Hiroshi AKOH  Hiroshi NAKAGAWA  Masahiro AOYAGI  Tohru TAINO  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    645-649

    We are developing a superconducting analog-to-digital converter (ADC) as a readout for high-resolution X-ray detectors based on a superconducting tunnel junction (STJ). The ADC has a sensitive front end which consists of a DC superconducting quantum interference device (SQUID). A signal current is digitized by this front end without using any preamplifiers. A single-flux-quantum (SFQ) pulse train whose frequency is proportional to the input current is launched by the front end, and integrated by a digital counter. The counter has a 10-bit resolution, and the integrated value is scanned and transferred to room-temperature processing modules with a frequency of 40 MHz. In this paper, the design of the ADC is described, and the preliminary results of the ADC performance test are shown. The performance of the STJ accompanied by the ADC is discussed in terms of the X-ray energy resolution.

  • A Single Flux Quantum (SFQ) Packet Switch Unit towards Scalable Non-blocking Router

    Shinichi YOROZU  Yoshio KAMEDA  Shuichi TAHARA  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    617-620

    High-end telecommunication systems in the larger nationwide networks of the next decade will require routers having a packet switching throughput capacity of over 10 Tbps. In such future high-end routers, the packet switch, which is the biggest bottleneck of the router, will need higher processing speeds than semiconductor devices. We propose a high-end router system architecture using single flux quantum (SFQ) technology. This system consists of semiconductor line card units and an SFQ switch card unit. The features of this switch card architecture are (1) using internal speedup architecture to reduce effective loads in the network, (2) using a packet switch scheduler to attain non-blocking characteristics. This architecture can expand the switching capacity to a level greater than tens of Tbps scale, keeping with non-blocking characteristics.

  • New Single-Flux-Quantum Logic Circuits with SQUIDs

    Yutaka HARADA  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    654-658

    This article describes simulation study on SQUID applications for Single-Flux-Quantum(SFQ) Logic Circuits. Here, a SQUID is compatible to a Quantum Flux Parametorn (QFP). Several new circuits based on a SQUID are investigated. A cascaded SQUID is proposed with the signal amplitude in the same order of an SFQ. An SFQ-pulse driving circuits with the new SQUID are successfully simulated. An SFQ trap which catches SFQs is newly proposed. Focusing on a circulating current of a segment in a Josephson transmission line (JTL), an SFQ-pulse is non-destructively detected by a SQUID. A conventional SQUID inserted in a JTL operates as a gate which controls SFQ-pulse transmission through it. Compatibility of SQUIDs and SFQ circuits is demonstrated.

  • Design of Small RSFQ Microprocessor Based on Cell-Based Top-Down Design Methodology

    Futabako MATSUZAKI  Kenichi YODA  Junichi KOSHIYAMA  Kei MOTOORI  Nobuyuki YOSHIKAWA  

     
    PAPER-Digital Devices and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    659-664

    We have proposed a top-down design methodology for the RSFQ logic circuits based on the Binary Decision Diagram (BDD). In order to show the effectiveness of the methodology, we have designed a small RSFQ microprocessor based on simple architecture. We have compared the performance of the 8-bit RSFQ microprocessor with its CMOS version. It was found that the RSFQ system is superior in terms of the operating speed though it requires extremely large area. We have also implemented and tested a 1-bit ALU that is one of the important components of the microprocessor and confirmed its correct operation.

  • Development of a High-Tc SQUID-Based Magnetometer System for MCG Measurement

    Shinya KURIKI  Hiroshi OYAMA  Amane HAYASHI  Satoru HIRANO  Tomoaki WASHIO  Mizushi MATSUDA  Koichi YOKOSAWA  

     
    INVITED PAPER-SQUIDs and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    670-676

    We describe here development of a multichannel high-Tc SQUID magnetometer system for measurement of cardiac magnetic fields, aiming at future application of diagnosis of heart diseases. Two types of direct-coupled SQUID magnetometers were fabricated and used: single pickup coil magnetometer having flux dams to suppress the shielding current that would induce flux penetration and the consequent low-frequency noise, and double pickup coil magnetometer having no grain boundary junctions and flux dams on the pickup coil. The superconducting film of both the magnetometers had holes and slots, leaving 5 µm-wide strip lines, to suppress trapping and penetration of magnetic flux vortices in environmental fields. We studied different schemes of active shielding to reinforce the efficiency of field-attenuation of magnetically shielded room (MSR). A feedback-type compensation using a normal detection coil wound around the wall of MSR and a selective cancellation of 50 Hz noise by means of adaptive filter were developed. Such combination of passive and active shielding, based on the use of simple MSR, would be suitable in a practical low-cost magnetometer system for clinical MCG examination. We fabricated a liquid nitrogen cryostat that could contain up to 20 magnetometer-capsules at 4 cm separation in a flat bottom, with a distance of 16 mm between the air and liquid nitrogen. The cryostat was set in a gantry, which had rotational, vertical and horizontal freedoms of movement, in a moderate-shielding MSR that was combined with the developed active shielding. Measurements of MCG were performed for normal subject using eight magnetometers operating simultaneously.

  • Thermally-Activated Flux Entry into a Pickup Coil through a Flux Dam in High Tc SQUID Magnetometers

    Keiji ENPUKU  Daishi TOKIMIZU  Daisuke KURODA  Shintaro HIJIYA  

     
    PAPER-SQUIDs and Their Applications

      Vol:
    E85-C No:3
      Page(s):
    681-686

    Thermally activated magnetic-flux entry into a pickup coil through a flux dam in high Tc superconducting quantum interference device (SQUID) is studied. The behavior of this thermal activation is analyzed in terms of the circulating current flowing in the pickup coil. It is shown that the thermal activation can be prevented when the circulating current becomes much below a critical current of the flux dam. It is also shown that we need a long waiting time in order to realize this situation since the circulating current logarithmically decays with time in the case of the thermal activation. The relationship between the thermal activation and the circulating current is qualitatively confirmed with the experiment. We also show a method in order to forcibly reduce the circulating current instead of the thermal activation. In this case, we can prevent the thermal activation without the long waiting time.

  • Experiments and Simulations of Electrical Pulse Modulation of Y-Ba-Cu-O Thin Films

    Carlo WILLIAMS  Guillaume SABOURET  Roman SOBOLEWSKI  

     
    PAPER-Mixers and Detectors

      Vol:
    E85-C No:3
      Page(s):
    733-737

    We report our studies on electrical current pulse perturbation of superconducting YBa2Cu3O7-x (YBCO) epitaxial thin films. When a current pulse is applied to a YBCO microbridge, a voltage develops across it that depends on the amplitude of the input current pulse. For a total current (input current pulse plus the dc bias) that is lower than the critical current Ic, an inductive voltage response is observed. When the total current exceeds Ic, a resistive response is generated and is observed after a certain delay time td. The origin of the resistive response was analyzed using the Geier and Schon model, which is based on the time-dependent Ginzburg-Landau equation. Our experimental samples consisted of 200-nm-thick epitaxial YBCO films, patterned into coplanar-strip (CPS) transmission lines, containing either two-microbridge or single-microbridge test structures. For the two-microbridge samples, a train of 100-fs-duration optical pulses was used to excite the larger microbridge and generate 2-ps-duration electrical pulses, which were then applied to perturb the smaller microbridge, which was independently biased in the superconducting state. In this case, an electro-optic sampling system was used to measure the YBCO kinetic-inductive voltage responses with the picosecond time resolution. For the single-microbridge structures, an electronic pulse generator was employed to supply the input current pulse, and a 14-GHz sampling oscilloscope was used to monitor the microbridge responses. The latter signals were in very good agreement with the model of Geier and Schon, assuming that the quasiparticle dynamics process that resulted from the nanosecond-wide current excitation was bolometric and followed the phonon escape time τes.

  • Laser-SQUID Microscopy as a Novel Tool for Inspection, Monitoring and Analysis of LSI-Chip-Defects: Nondestructive and Non-electrical-contact Technique

    Kiyoshi NIKAWA  

     
    INVITED PAPER-Instruments and Coolers

      Vol:
    E85-C No:3
      Page(s):
    746-751

    We have developed and demonstrated a novel technique for electrical inspection and electrical failure analysis, which can detect open, high-resistance, and short circuits without the need for electrical contact with the outside of the LSI chip or the board on which the LSI chip is mounted. The basic idea of the technique is the detection of the magnetic field produced by OBIC (optical beam induced current) or photo current. A DC-SQUID (superconducting quantum interference device) magnetometer is used to detect the magnetic field. This scanning laser-SQUID microscopy ("laser-SQUID" for short) has a spatial resolution of about 1.3 µm. It can be used to distinguish defective chips before bonding pad patterning or after bonding without pin-selection. It can localize any defective site in the chip to within a few square microns.

  • A Phase Lock Detector for 16-QAM Systems for High-Speed Wireless Communications

    Myung Sup KIM  Jin Suk SEONG  Doeck Gil OH  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:3
      Page(s):
    658-662

    We propose a phase lock detector for 16-QAM systems for high-speed wireless communications. The detector gathers the phase estimates statistically according to the predetermined symbols, filters them through an average filter, and indicates the phase lock state by comparing the filtered resultants to a threshold value. The statistical property of the proposed detector is analyzed using the stochastic process theory. First, we obtain the characteristic function of a random variable describing the filter output. Second, through inverse Laplace transform, we get the probability density function of the random variable. Third, we can obtain the phase lock detection probability using the probability density function. Finally, to investigate its accuracy, we obtain the probability density function of a random variable for the detector output, and compare it to the simulation result.

  • Low-Field Magnetization of the Triangular Microhole Lattice on Pb Film of 1.8-µm Lattice Constant

    Shin'ichiro NAKATA  Masaaki YOSHIDA  Takekazu ISHIDA  

     
    PAPER-Novel Devices and Device Physics

      Vol:
    E85-C No:3
      Page(s):
    814-817

    It is of considerable interest to study the vortex behavior of a multiply connected superconductor for potential applications of vortex devices. Our sample is made of a type-I superconductor Pb and a capillary plate. The nominal sizes are 1-µm in hole diameter and 1.8-µm in lattice pitch. The microholes form triangular lattice while a superconducting network consists of a honeycomb lattice. When each hole accommodates a single vortex 0, an applied magnetic field becomes a nominal matching field (7.83 G). We measure the magnetization curve of sample by means of a SQUID (superconducting quantum interference device) magnetometer in the accurate small fields on the order of Gauss. We find a sharp magnetization peak at 8.2 G at temperatures near the critical temperature Tc.

  • Active Multicast Congestion Control with Hop-by-Hop Credit-Based Mechanism

    Jong-Kwon LEE  Tag Gon KIM  

     
    PAPER-Network

      Vol:
    E85-B No:3
      Page(s):
    614-622

    This paper proposes a credit-based congestion control scheme for multicast communication which employs application-specific processing at intermediate network nodes. The control scheme was designed not only to take advantage of credit-based flow control for unicast communication, but also to achieve flexibility supported by active network technology. The resultant active multicast congestion control scheme is able to meet the different requirements of various multicast applications in terms of reliability and end-to-end latency. The performance of the proposed control scheme was evaluated using both discrete-event simulations and experiments on a prototype active network implementation. The results show that the proposed scheme performs very well in terms of fairness, responsiveness, and scalability. The implementation experiences also confirmed the feasibility of the scheme in practice.

  • A Distributed Device Model for Hot-Electron Bolometers

    Harald F. MERKEL  Pourya KHOSROPANAH  Aurèle ADAM  Serguei CHEREDNICHENKO  Erik Ludvig KOLLBERG  

     
    INVITED PAPER-Mixers and Detectors

      Vol:
    E85-C No:3
      Page(s):
    725-732

    Previous device models for Hot Electron Bolometers (HEB) apply a lumped element approach to calculate the small signal parameters. In this work, large signal parameters are calculated using a nonlinear one-dimensional heat balance equation including critical current effects. Small signal equivalents are obtained by solving a linearized heat balance for the small signal beat term in the HEB. In this model, the absorbed bias power density is treated as a profile along the HEB bridge and the electrothermal feedback acts differently on different parts of the bridge. This model predicts more realistic conversion gain figures being about 10 dB lower than in previous ones.

  • Target Tracking for Maneuvering Targets Using Multiple Model Filter

    Hiroshi KAMEDA  Takashi MATSUZAKI  Yoshio KOSUGE  

     
    INVITED PAPER-Applications

      Vol:
    E85-A No:3
      Page(s):
    573-581

    This paper proposes a maneuvering target tracking algorithm using multiple model filters. This filtering algorithm is discussed in terms of tracking performance, tracking success rate and tracking accuracies for short sampling interval as compared with other conventional methodology. Through several simulations, validity of this algorithm has been confirmed.

  • Transport Properties of Superconductive Bi-2212/YBCO Bilayer Films Prepared by Nd:YAG Laser Ablation

    Tetsuji UCHIYAMA  Zhen WANG  Ienari IGUCHI  

     
    PAPER-Thin Films and Materials

      Vol:
    E85-C No:3
      Page(s):
    784-788

    We have fabricated a novel type of intrinsic Josephson junctions with superconducting Bi2Sr2CaCu2O8+y (Bi-2212)/YBa2Cu3O7-x(YBCO) bilayer thin films deposited on MgO(100) substrates. We used the 4th harmonics of a Nd:YAG pulsed laser ablation. Furthermore, we studied the transport properties of a 25 µm 25 µm Bi-2212/YBCO mesa-type junction. The zero resistance temperature was around 50 K. The current-voltage characteristics showed flux-flow-like behavior and a supercurrent of about 2 mA at 4.2 K. Shapiro steps were observed when microwave was irradiated to the mesa junction. These Shapiro steps are attributed to the Josephson junction formed at the interface between the Bi-2212 and YBCO layers in the mesa structure and not to the intrinsic Josephson junctions in the Bi-2212 layer or the micro-grains within the films.

  • How to Quantify Multipath Separation

    Martin STEINBAUER  Huseyin OZCELIK  Helmut HOFSTETTER  Christoph F. MECKLENBRAUKER  Ernst BONEK  

     
    PAPER-Multipath

      Vol:
    E85-C No:3
      Page(s):
    552-557

    This contribution discusses which information can be derived from estimated directions of arrival (DOAs) and directions of departure (DODs) from a multiple-input multiple-output (MIMO) radio system, and establishes two new parameters describing the multipath spread at both link ends. We find that the multipath component separation, MCS, combines delay, (double-) angular and Doppler dispersion, as appropriate. MCS provides a system-independent radio characterization of propagation environments and aids in selecting optimum positions for smart-antenna deployment. Evaluation of double-directional measurements (antenna arrays at both link ends) in indoor environments show the usefulness and the limits of the multipath component separation concept.

  • Design of Bandpass Filters with a Function to Control the Number of Attenuation Poles

    Kouji WADA  Yasuhisa YAMAMOTO  Osamu HASHIMOTO  

     
    PAPER-Circuit

      Vol:
    E85-C No:3
      Page(s):
    578-585

    New bandpass filters (BPFs) with stub resonators are proposed for creating multiple attenuation poles. Firstly, the stub-dependent characteristics of the distributed-element stubs are examined theoretically. Secondly, the new BPFs with resonators of combined stubs are proposed. An advantage of these filters is the possibility of controlling the number of attenuation poles. The design of the proposed filter is carried out based on the general filter design with the narrow-band approximation technique. The transmission and reflection characteristics of the proposed BPFs are also examined theoretically and experimentally. The miniaturization of the filters is also carried out using the resonator with loaded-element stubs. The discussions lead us to the conclusion that the proposed design method of the filters are useful for controlling the number of attenuation poles of the BPF.

6161-6180hit(8214hit)