The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

6121-6140hit(8214hit)

  • Escape and Restoration Routing: Suspensive Deadlock Recovery in Interconnection Networks

    Toshinori TAKABATAKE  Masato KITAKAMI  Hideo ITO  

     
    PAPER-Computer Systems

      Vol:
    E85-D No:5
      Page(s):
    824-832

    In interconnection networks, deadlock recovery has been studied in routing strategy. The routing strategy for the deadlock recovery is intended to optimize the routing performance when deadlocks do not occur. On the other hand, it is important to improve the routing performance by handling deadlocks if they occur. In this paper, a routing strategy for suspensive deadlock recovery called an escape-restoration routing is proposed and its performance is evaluated. In the principle of the proposed techniques, a small amount of exclusive buffer (escape-buffer) at each router is prepared for handling one of deadlocked packets. The transmission of the packet is suspended by temporarily escaping it to the escape-buffer. After the other deadlocked packets were sent, the suspended transmission resumes by restoring the escaped packet. Evaluation results show that the proposed techniques can improve the routing performance more than that of the previous recovery-based techniques in handling deadlocks.

  • A Spatially Adaptive Gradient-Projection Image Restoration

    Min-Cheol HONG  Hyung Tae CHA  Hern-Soo HAHN  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:5
      Page(s):
    910-913

    In this letter, we propose a spatially adaptive image restoration algorithm, using local statistics. The local variance, mean and maximum value are utilized to constrain the solution space. These parameters are computed at each iteration step using partially restored image. A parameter defined by the user determines the degree of local smoothness imposed on the solution. The resulting iterative algorithm exhibits increased convergence speed when compared with the non-adaptive algorithm. In addition, a smooth solution with a controlled degree of smoothness is obtained. Experimental results demonstrate the capability of the proposed algorithm.

  • Fabrication of 100 nm Width Fine Active-Region Using LOCOS Isolation

    Daisuke NOTSU  Naoya IKECHI  Yasuyuki AOKI  Nobuyuki KAWAKAMI  Kentaro SHIBAHARA  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1119-1124

    We have investigated fabricating fine active regions by tuning process condition of conventional LOCOS for the fabrication of the gate width 100 nm MOSFET. Considering the lowering in fluidity of silicon dioxide, oxidation temperature was changed to 900 which is lower than conventional 1000. In addition active region shape was modified to utilize vertical stress due to nitride elastic force. As a result, 75 nm width fine active region was successfully fabricated. Though lowering of the oxidation temperature tends to increase stress, junction leakage current and gate oxide reliability showed no degradation. On the other hand, PSL (Poly-Si Sidewall LOCOS) gave rise to degradation in the electrical properties by the stress. Using the LOCOS process, we have fabricated the MOSFETs with the fine active regions.

  • Analytical Evaluation of Internet Packet Loss Recovery Using Convolutional Codes

    Anna YAMAGUCHI  Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Fault Tolerance

      Vol:
    E85-D No:5
      Page(s):
    854-863

    With increasing Internet traffic congestion, the provision of reliable transmission and packet loss recovery continues to be of substantial importance. In this paper, we analyze a new recovery method using punctured convolutional codes, demonstrating the simplicity and efficiency of the proposed method for the recovery of lost packets. The analysis provides a method for determining the recoverability and the post-reconstruction receiving rate for a given convolutional code. The exact expressions for calculating the recovery rate are derived for a number of convolutional codes and the (2, 1, m) punctured convolutional code. Where packet loss probabilities are in the range typically found in Internet transmissions, the convolutional code-based method delivers superior performance over the traditional parity method with the same redundancy.

  • Uniform Raised-Salicide Technology for High-Performance CMOS Devices

    Hitoshi WAKABAYASHI  Takeshi ANDOH  Tohru MOGAMI  Toru TATSUMI  Takemitsu KUNIO  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1104-1110

    A uniform raised-salicide technology has been investigated using both uniform selective-epitaxial-growth (SEG) silicon and salicide films, to reduce a junction leakage current of shallow source/drain (S/D) regions for high-performance CMOS devices. The uniform SEG-Si film without pits is formed by using a wet process, which is a carbon-free oxide removal only using a dilute hydrofluoric acid (DHF) dipping, prior to the Si-SEG process. After a titanium-salicide formation using a conventional two-step salicide process, this uniform SEG-Si film achieves good S/D junction characteristics. The uniform titanium-salicide film without bowing into a silicon is formed by a smaller Ti/SEG-Si thickness ratio, which results in a low sheet resistance of 5 Ω/sq. without a narrow-line effect. Furthermore, the drive current is maximized by this raised-salicide film using a Ti/SEG-Si thickness ratio of 1.0.

  • Sidelobe Level of a Two-Bit Digital Phased Array Composed of a Small Number of Elements

    Masaharu FUJITA  

     
    LETTER

      Vol:
    E85-B No:5
      Page(s):
    982-986

    This letter investigates sidelobe levels of a two-bit digital phased array composed of a small number of elements. Among several phase shifter designs applicable to phased arrays, a two-bit design needs the least number of circuit elements so that the development and manufacturing need the lowest cost. Now the following questions arise. Is a two-bit phased array practical? How low can its sidelobe level be reduced? To answer the questions, three methods are tried to reduce the sidelobe level of a uniformly-excited linear array of isotropic elements. The methods are the quadratic-phase feed method, the partially randomizing method of periodic phase errors, and the genetic algorithm (GA) approach. Among the methods, the quadratic-phase feed method provides the lowest sidelobe level around -12.5 dB - -13.2 dB in the steering angles from 0 to 48 degrees for a 21-element, half-wavelength spacing array, and -11.2 dB - -13.0 dB in the steering angles from 0 to 30 degrees for an 11-element, 0.6-wavelength spacing array. Although it depends on the system requirement, these values would be acceptable in some applications, hence a two-bit phased array designed properly may be practical in an actual system.

  • Error Performance of Codes to which Belief Propagation Decoding Algorithm is Applicable

    Akira SHIOZAKI  Hideki FUKUHARA  

     
    LETTER-Coding Theory

      Vol:
    E85-A No:5
      Page(s):
    1183-1186

    This letter presents the empirical error performance of combining method of a binary numerical code and a single error correcting code on Gaussian channel by belief propagation (BP) decoding algorithm. The numerical codes mentioned here are constructed with any symbol value and have the parity check matrices in reduced-echelon form whose elements are binary (0 and 1). The simulation results show that the method yields good decoding error performance for medium code lengths.

  • Laser Doping for Ultra-Shallow Junctions Monitored by Time Resolved Optical Measurements

    Dominique DEBARRE  Gurwan KERRIEN  Takashi NOGUCHI  Jacques BOULMER  

     
    PAPER

      Vol:
    E85-C No:5
      Page(s):
    1098-1103

    Laser induced boron doping of silicon is studied as a function of the laser pulse number and energy density, in a special configuration where the precursor gas (BCl3) is injected and chemisorbed on the Si surface prior to each laser pulse. In-situ optical diagnostics, based on the transient reflectivity at 675 nm, allow to control the evolution of the dopant concentration and of the doped layer thickness during the laser doping process. Samples are characterized by the four-point probe method, atomic force microscopy (AFM) and secondary ion mass spectrometry (SIMS). As the laser pulse number is scanned from 10 to 200 at a constant laser pulse energy, the junction depth increases from 21 to 74 nm while its sheet resistance decreases from 220 to 17 Ω/. Moreover, boron concentrations well above the solubility limit (up to 31021 cm-3 for 200 pulses) and very abrupt box-like dopant profiles are obtained. So, laser doping, in this dopant gas injection configuration, seems to be a very attractive technique to meet the International Technology Roadmap for Semiconductors (ITRS) requirements for ultra-shallow junctions.

  • Scaling Algorithms for M-Convex Function Minimization

    Satoko MORIGUCHI  Kazuo MUROTA  Akiyoshi SHIOURA  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    922-929

    M-convex functions have various desirable properties as convexity in discrete optimization. We can find a global minimum of an M-convex function by a greedy algorithm, i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling technique to a greedy algorithm and propose an efficient algorithm for the minimization of an M-convex function. Computational results are also reported.

  • Cryptanalysis of a Key Management Scheme for Secure Multicast Communications

    Gwoboa HORNG  

     
    LETTER-Internet

      Vol:
    E85-B No:5
      Page(s):
    1050-1051

    Multicast is an efficient way to send messages to a group of members. It is becoming the basis for a number of applications, such as teleconferencing, news groups, and on-line games. Security is one of the main issues in realizing multicast communications. A working group within IETF dedicated to multicast security has been formed and RFCs and working drafts concerning multicast security are proposed. This letter analyzes the security of a scheme proposed in [1] for securely establishing a shared, secret key in a large, dynamic group. We show that it fails to provide forward and backward security.

  • An Approach to Adaptive Network

    Shinya ISHIHARA  Toshiaki MIYAZAKI  Atsushi TAKAHARA  Seiichiro TANI  

     
    PAPER-Network

      Vol:
    E85-D No:5
      Page(s):
    839-846

    This paper describes the concept of an adaptive network, that is, a network environment that can rapidly and autonomously adapt its behavior according to network conditions and traffic status. The user interface of the adaptive network can access any resource in the network as a memory-mapped I/O device, as if it were attached to the local bus of the user's PC. This network concept has several benefits. From the application development viewpoint, no network related programming is required, and applications do not have to be modified even if the network topologies and protocols are changed. Network maintenance and upgrading can be done anytime without having to worry about the application users, because the network itself is concealed from the applications. In addition, the reconfigurable hardware technology functions as an autonomous network control through the use of a lower-layer protocol. We developed a testbed that makes heterogeneous resources available to users and used it to demonstrate the feasibility of our concept by implementing and running some applications over it.

  • PDLC Rewritable Medium

    Keiko SEKINE  Wataru SAITO  

     
    PAPER-Optoelectronics

      Vol:
    E85-C No:5
      Page(s):
    1151-1155

    A new rewritable medium utilizing a guest-host (G-H) polymer-dispersed liquid-crystal (PDLC) film has been developed in our laboratory. The medium is thermally written and electrically erased. It is portable, like paper, and can store recorded data because of the memory effect of smectic-A liquid crystal (SmA LC), which exhibits bistable states of homeotropic and focal conic alignment. Dichroic dye is added to the SmA LC to form the G-H type. An evaluation of the characteristics revealed that this medium exhibits both high contrast and good reliability.

  • A New Factoring Method of Integers N=pr q for Large r

    Koji CHIDA  Shigenori UCHIYAMA  Taiichi SAITO  

     
    PAPER

      Vol:
    E85-A No:5
      Page(s):
    1050-1053

    Since the invention of the RSA scheme, a lot of public-key encryption and signature schemes based on the intractability of integer factoring have been proposed. Most employ integers of the form N = p q, such as the RSA scheme, but some employ integers of the form N = pr q. It has been reported that RSA decryption speed can be greatly improved by using N = pr q integers for large r. On the other hand, Boneh et al. proposed a novel integer factoring method for integers such as N = pr q for large r. This factoring algorithm, the so-called Lattice Factoring Method, is based on the LLL-algorithm. This paper proposes a new method for factoring integers of the form N = pr q for large r and gives a new characterization of r such that factoring integers N = pr q is easier. More precisely, the proposed method strongly depends on the size and smoothness of the exponent, r. The theoretical consideration of and implementation of our method presented in this paper show that if r satisfies a certain condition our method is faster than both Elliptic Curve Method and Lattice Factoring Method. In particular, the theoretical consideration in this paper mainly employs the techniques described in the excellent paper by Adleman, Pomerance and Rumely that addresses primality testing.

  • IETQ: An Incrementally Extensible Twisted Cube

    Jyh-Shan CHANG  Sao-Jie CHEN  Tzi-Dar CHIUEH  

     
    PAPER-Graphs and Networks

      Vol:
    E85-A No:5
      Page(s):
    1140-1151

    In this paper, a new family of interconnection networks which we call the Incrementally Extensible Twisted Cube (IETQ) is proposed. The topology of this network is a novel generalization of the twisted cube. It inherits all the merits but without the limitations owned by a twisted cube. First, this proposed IETQ is incrementally extensible and can be adapted for use in any number of nodes; therefore, this network is particularly well suited for the design of a distributed communication network with an arbitrary number of nodes. Second, the vertex connectivity of IETQ is n. Measured by this vertex connectivity, we demonstrate that this network is optimally fault-tolerant . And it is almost regular, because the difference between the maximum and minimum degree of any node in an IETQ is at most one. A shortestpath routing algorithm for IETQ is proposed to generate path for any given pair of vertices in the network. Third, comparing with most of the other competitors, the diameter of this IETQ network is only half in size. This low diameter helps to reduce the internode communication delay. Moreover, IETQ also possesses the property of a pancyclic network. This attractive property would enable us to map rings of any length into the proposed network.

  • Ultra-Shallow Junction Formation with Antimony Implantation

    Kentaro SHIBAHARA  

     
    INVITED PAPER

      Vol:
    E85-C No:5
      Page(s):
    1091-1097

    Ultra shallow low-resistive junction formation has been investigated for sub-100-nm MOSFETs using antimony implantation. The pileup at the Si/SiO2 interface and the resulting dopant loss during annealing is a common obstacle for antimony and arsenic to reduce junction sheet resistance. Though implanted arsenic gives rise to pileup even with a few seconds duration RTA (Rapid Thermal Annealing), antimony pileup was suppressed with the RTA at relatively low temperature, such as 800 or 900. As a result, low sheet resistance of 260 Ω/sq. was obtained for a 24 nm depth junction with antimony. These results indicate that antimony is superior to arsenic as a dopant for ultra shallow extension formation. However, increase in antimony concentration above 11020 cm-3 gives rise to precipitation and it limits the sheet resistance reduction of the antimony doped junctions. Redistribution behaviors of antimony relating to the pileup and the precipitation are discussed utilizing SIMS (Secondary Ion Mass Spectrometry) depth profiles.

  • Proposal of 3D Graphics Layout Design System Using GA

    Aranya WALAIRACHT  Shigeyuki OHARA  

     
    PAPER-Computer Graphics

      Vol:
    E85-D No:4
      Page(s):
    759-766

    In computer-aided drafting and design, interactive graphics is used to design components, systems, layouts, and structures. There are several approaches for using automated graphical layout tools currently. Our approach employs a genetic algorithm to implement a tool for automated 3D graphical layout design and presentation. The effective use of a genetic algorithm in automated graphical layout design relies on defining a fitness function that reflects user preferences. In this paper, we describe a method to define fitness functions and chromosome structures of selected objects. A learning mechanism is employed to adjust the fitness values of the objects in the selected layout chosen by the user. In our approach, the fitness functions can be changed adaptively reflecting user preferences. Experimental results revealed good performance of the adaptive fitness functions in our proposed mechanism.

  • A Generalized Processor Allocation Scheme for Recursively Decomposable Interconnection Networks

    Fan WU  Ching-Chi HSU  

     
    PAPER-Computer Systems

      Vol:
    E85-D No:4
      Page(s):
    694-713

    The Recursively Decomposable Interconnection Network (RDIN) is a set of interconnection networks that can be recursively decomposed into smaller substructures whose topologies and properties are similar to the original one. The examples of the RDIN are hypercubes, star graph, mesh, tree, pyramid, pancake, and WK-recursive network. This paper proposed a uniform and simple model to represent the RDIN inside computers at first. Based on the model, a generalized and efficient allocation scheme capable of being applied to all the members of the RDIN is developed. The proposed scheme can fully recognize the substructures (such as subcube, substar, subtree,. . . ) more easily than ever, and it is the first one that can fully recognize all the incomplete substructures. The best-fit allocation is also proposed. The criterion aims at keeping the largest free parts from being destroyed, as is the philosophy of the best-fit allocation. Moreover, the proposed scheme can be performed in an injured RDIN with its processors and/or links faulty. Finally, the mathematical analysis and simulations for two instances, hypercubes and star graphs, of the RDIN are presented. The results show that the generalized scheme outperforms or is comparable to the other proprietary allocation schemes designed for the specific structure.

  • Refining Behavioral Specification for Satisfying Non-functional Requirements of Stakeholders

    Haruhiko KAIYA  Kenji KAIJIRI  

     
    PAPER-Specification

      Vol:
    E85-D No:4
      Page(s):
    623-636

    System specifications should be refined to meet stakeholders' requirements as much as possible, because the first specification does not satisfy all stakeholders in general. This paper presents a procedure to refine behavioral specification to satisfy stakeholders. Non-functional requirements are used for checking stakeholders' satisfaction. With this procedure, stakeholder-dissatisfaction can be reduced and new possibilities to satisfy or dissatisfy other stakeholders can be found, since a modification to cancel dissatisfaction can sometimes influence the satisfaction of the others.

  • An Efficient Method for Testing Reachability Using Knowledge in Detecting Non-determinacy Feature Interactions

    Junpei KOBAYASHI  Tae YONEDA  Tadashi OHTA  

     
    PAPER-Specification

      Vol:
    E85-D No:4
      Page(s):
    607-614

    Services that operate normally, independently, will behave differently when simultaneously initiated with another service. This behavior is called a feature interaction. A feature interaction, where the next state can not be determined uniquely for one event, is called a non-determinacy feature interaction. To detect the interaction, judgment has to be made as to whether the state, where the non-determinacy occurs, is reachable from the initial state or not. For the judgment, many methods have been proposed. But, still now, it is required huge computation time to judge the reachability. This paper proposes a new method to test the reachability using a little knowledge elicited beforehand. By using the proposed method computation time was reduced drastically. Besides, by applying the proposed method to a benchmark, the proposed method was confirmed to be effective and reasonable.

  • Gain-Scheduled Control for an Active Suspension System with an Asymmetric Hydraulic Actuator

    YuJin JANG  Sang Woo KIM  

     
    LETTER-Systems and Control

      Vol:
    E85-A No:4
      Page(s):
    903-908

    The main objective of vehicle suspensions is to improve ride comfort and road holding ability. Though passive suspensions consist of spring and damper, active suspensions adopt an actuator in addition to passive suspensions. In this paper, a quarter car model with an asymmetric hydraulic actuator is used. Moreover, the damping coefficient of the damper, which is changed according to the actuator velocity, is considered. The LPV (Linear Parameter Varying) model is obtained by applying feedback linearization technique. Next, a gain-scheduled controller, based on LQ regulator with different weighting factor, is designed according to the actuator velocity and the stability of the proposed controller is also proved. The effectiveness of the proposed controller is shown by numerical simulations.

6121-6140hit(8214hit)