The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

6541-6560hit(8214hit)

  • Extraction of Subimages by Lifting Wavelet Filters

    Shigeru TAKANO  Koichi NIIJIMA  

     
    PAPER-Image/Visual Signal Processing

      Vol:
    E83-A No:8
      Page(s):
    1559-1565

    This paper proposes a method for extracting subimages from a huge reference image by learning lifting wavelet filters. Lifting wavelet filters are biorthogonal wavelet filters containing free parameters developed by Sweldens. Our method is to learn such free parameters using some training subimages so as to vanish their high frequency components in the y- and x-directions. The learnt wavelet filters have the feature of training subimages. Applying such wavelet filters to the reference image, we can detect the locations where the high frequency components are almost the same as those of the target subimage.

  • A Pseudo Glottal Excitation Model for the Linear Prediction Vocoder with Speech Signals Coded at 1.6 kbps

    Hwai-Tsu HU  Fang-Jang KUO  Hsin-Jen WANG  

     
    PAPER-Speech and Hearing

      Vol:
    E83-D No:8
      Page(s):
    1654-1661

    This paper presents a pseudo glottal excitation model for the type of linear prediction vocoders with speech being coded at 1.6 kbps. While unvoiced speech and silence intervals are processed with a stochastic codebook of 512 entries, a glottal codebook with 32 entries for voiced excitation is used to describe the glottal phase characteristics. Steps of formulating the pseudo glottal excitation for one pitch period consist of 1) applying a polynomial model to simulate the low-frequency constituent of the residual, 2) inserting a magnitude-adjustable pulse sequence to characterize the main excitation, and 3) introducing turbulent noise in series with the resulting excitation. Procedures are described for codebook construction in addition to analysis and synthesis of the pseudo glottal excitation. Results in a mean opinion score (MOS) test show that the quality produced by the proposed coder is almost as good as that by 4.8 kbps CELP coder for male utterances, but the quality for female utterances is yet somewhat inferior.

  • Application of Technology CAD in Process Development for High Performance Logic and System-on-Chip in IC Foundry

    Boon-Khim LIEW  Chih-Chiang WANG  Carlos H. DIAZ  Shien-Yang WU  Jack Yuan-Chen SUN  Yai-Fen LIN  Di-Son KUO  Hua-Tai LIN  Anthony YEN  

     
    INVITED PAPER-Simulation Methodology and Environment

      Vol:
    E83-C No:8
      Page(s):
    1275-1280

    The application of Technology CAD simulations for development of IC processes in foundry is presented. Examples include device design, Flash cell design and optical proximity correction for SRAM cell. The challenges of using TCAD tools in the IC foundry is also discussed.

  • Proposal of Radio-over-Fiber Systems Using Cascaded Radio-to-Optic Direct Conversion Scheme

    Pat SUWONPANICH  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1766-1774

    This paper newly proposes radio-over-fiber systems using cascaded radio-to-optic direct conversion (ROC) scheme. The ROC system can convert a radio signal into an optical signal with the same signal format. The received carrier-to-noise ratio (CNR) performance of the radio-over-fiber systems using the ROC/heterodyne detection (HD) scheme and the ROC/self-heterodyne detection (SHD) scheme are theoretically analyzed. The optimization of an optical modulation index (OMI) in each radio base station (RBS) is also presented. By using the proposed OMI optimization method, the ROC/HD and the ROC/SHD schemes are shown to provide approximately 16 dB and 14 dB improvement over the intensity modulation/direct detection scheme when the number of RBS is 20 and the radio-frequency (RF) signal bandwidth is 150 MHz, respectively. The ROC/SHD scheme enables a receiver structure to become simple while still achieving high received CNR.

  • Approximation of Chaotic Dynamics by Using Smaller Number of Data Based upon the Genetic Programming and Its Applications

    Yoshikazu IKEDA  Shozo TOKINAGA  

     
    PAPER-Nonlinear Signal Processing

      Vol:
    E83-A No:8
      Page(s):
    1599-1607

    This paper deals with the identification of system equation of the chaotic dynamics by using smaller number of data based upon the genetic programming (GP). The problem to estimate the system equation from the chaotic data is important to analyze the structure of dynamics in the fields such as the business and economics. Especially, for the prediction of chaotic dynamics, if the number of data is restricted, we can not use conventional numerical method such as the linear-reconstruction of attractors and the prediction by using the neural networks. In this paper we utilize an efficient method to identify the system equation by using the GP. In the GP, the performance (fitness) of each individual is defined as the inversion of the root mean square error of the spectrum obtained by the original and predicted time series to suppress the effect of the initial value of variables. Conventional GA (Genetic Algorithm) is combined to optimize the constants in equations and to select the primitives in the GP representation. By selecting a pair of individuals having higher fitness, the crossover operation is applied to generate new individuals. The crossover operation used here means the replacement of a part of tree in individual A by a part of tree in individual B. To avoid the meaningless genetic operation, the validity of prefix representation of the subtree to be embedded to the other tree is probed by using the stack count. These newly generated individuals replace old individuals with lower fitness. The mutation operation is also used to avoid the convergence to the local minimum. In the simulation study, the identification method is applied at first to the well known chaotic dynamics such as the Logistic map and the Henon map. Then, the method is applied to the identification of the chaotic data of various time series by using one dimensional and higher dimensional system. The result shows better prediction than conventional ones in cases where the number of data is small.

  • Epipolar Constraint from 2D Affine Lines, and Its Application in Face Image Rendering

    Kuntal SENGUPTA  Jun OHYA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E83-D No:7
      Page(s):
    1567-1573

    This paper has two parts. In the first part of the paper, we note the property that under the para perspective camera projection model of a camera, the set of 2D images produced by a 3D point can be optimally represented by two lines in the affine space (α-β space). The slope of these two lines are same, and we observe that this constraint is exactly the same as the epipolar line constraint. Using this constraint, the equation of the epipolar line can be derived. In the second part of the paper, we use the "same slope" property of the lines in the α-β space to derive the affine structure of the human face. The input to the algorithm is not limited to an image sequence of a human head under rigid motion. It can be snapshots of the human face taken by the same or different cameras, over different periods of time. Since the depth variation of the human face is not very large, we use the para perspective camera projection model. Using this property, we reformulate the (human) face structure reconstruction problem in terms of the much familiar multiple baseline stereo matching problem. Apart from the face modeling aspect, we also show how we use the results for reprojecting human faces in identification tasks.

  • Extracting Object Information from Aerial Images: A Map-Based Approach

    Yukio OGAWA  Kazuaki IWAMURA  Shigeru KAKUMOTO  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1450-1457

    We have developed a map-based approach that enables us to efficiently extract information about man-made objects, such as buildings, from aerial images. An image is matched with a corresponding map in order to estimate the object information in the image (i. e. , presence, location, shape, size, kind, and surroundings). This approach is characterized by using a figure contained in a map as an object model for a top-down (model-driven) analysis of an object in the aerial image. We determined the principal steps of the map-based approach needed to extract object information and update a map. These steps were then applied to obtain the locations of missing buildings and the heights of existing buildings. The extraction results of experiments using aerial images of Kobe City (taken after the 1995 earthquake) show that the approach is effective for automatically extracting building information from aerial images and for rapidly updating map data.

  • An Improved Movement-Based Registration in Personal Communication System Networks

    Jang Hyun BAEK  Byung Han RYU  

     
    PAPER-Wireless Communication Switching

      Vol:
    E83-B No:7
      Page(s):
    1509-1516

    An efficient location management for mobile stations plays an important role in personal communication systems. The key elements of location management are location registration and paging. In this paper, we propose the improved movement-based registration method with a selective paging scheme which enables to minimize the signaling traffic such as a paging load and a registration load. For reducing the paging load, we newly establish a paging area and analyze its performance by modeling as one dimensional random walk model with a barrier state. Further, for decreasing the registration load, we also propose a new movement-based registration scheme by using a counter and a buffer which can store the number of cell boundary crossings and the cell identification, respectively. Through numerical results, we show that our proposed movement-based registration provides a better performance than the conventional movement-based registration.

  • OPTIMA: Scalable, Multi-Stage, 640-Gbit/s ATM Switching System Based on Advanced Electronic and Optical WDM Technologies

    Naoaki YAMANAKA  Eiji OKI  Seisho YASUKAWA  Ryusuke KAWANO  Katsuhiko OKAZAKI  

     
    PAPER-Switching

      Vol:
    E83-B No:7
      Page(s):
    1488-1496

    An experimental 640-Gbit/s ATM switching system is described. The switching system is scalable and quasi-non-blocking and uses hardware self-rearrangement in a three-stage network. Hardware implementation results for the switching system are presented. The switching system is fabricated using advanced 0.25-µm CMOS devices, high-density multi-chip-module (MCM) technology, and optical wavelength-division-multiplexing (WDM) interconnection technology. A scalable 80-Gbit/s switching module is fabricated in combination with a developed scalable-distributed-arbitration technique, and a WDM interconnection system that connects multiple 80-Gbit/s switching modules is developed. Using these components, an experimental 640-Gbit/s switching system is partially constructed. The 640-Gbit/s switching system will be applied to future broadband ATM networks.

  • Method for the Measurement of Scattering Coefficients Using a Metal-Plate Reflector in the Microwave Region

    Ryoichi UENO  Toshio KAMIJO  

     
    PAPER-Antenna and Propagation

      Vol:
    E83-B No:7
      Page(s):
    1554-1562

    A new method for measuring the scattering coefficient using a metal-plate reflector was developed in order to provide a non-destructive way for the assessment of microwave materials in free space. By displacing the position of the metal-plate reflector on the specimen to be tested, the incident wave and the scattered wave from the measured area were determined without the influence of extraneous waves such as the direct coupling between transmitting and receiving antennas and scattered waves from background objects. Because the behavior of a metal-plate reflector is similar to that of an optical shutter in optics, our new scattering measurement system enables us to measure both backward- and forward-scattering coefficients of small regions of the specimen for various types of materials in a non-destructive manner. Our study examined the metal-plate size dependence of the complex reflection and transmission coefficients of some dielectric sheet samples. The measured data indicated that the reflection and transmission coefficients of a Bakelite flat plate and Styrofoam sheet were constant for various sizes of metal plates at the X-band.

  • Sensing Film Selection of QCM Odor Sensor Suitable for Apple Flavor Discrimination

    Kenichi NAKAMURA  Takuya SUZUKI  Takamichi NAKAMOTO  Toyosaka MORIIZUMI  

     
    PAPER-Sensor

      Vol:
    E83-C No:7
      Page(s):
    1051-1056

    In the food, beverage and cosmetic industry and so on, odor sensing systems instead of human sensory test are demanded. We have developed odor sensing systems using QCM (quartz crystal microbalance) sensor array and pattern recognition method. Since the properties of the sensors depend on the gas sorption characteristics of the sensing films coated on them, the optimum films according to target odors should be selected. In this study, we tried to select sensing films appropriate for discrimination of slightly different apple flavors. The examples of typical apple flavors were prepared blending 9 compounds. The sensing films were extracted from various kinds of materials such as lipid, stationary phase material of GC (gas chromatography) and cellulose. The selection method under the condition of the small number of measurements was studied. We analyzed the data of steady-state sensor responses in terms of the Euclidean distance, and the films appropriate for apple flavor discrimination were successfully selected.

  • A Photoelectric Property of Merocyanine LB Film Cell Utilizing Surface Plasmon Polariton Excitation

    Kazunari SHINBO  Takaaki EBE  Futao KANEKO  Keizo KATO  Takashi WAKAMATSU  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1081-1087

    Short-circuit photocurrents (ISC) utilizing surface plasmon polariton (SPP) excitation were investigated for the merocyanine (MC) LB film photoelectric device. The device has a prism/MgF2/Al/MC LB film/Ag structure. In the attenuated total reflection (ATR) configuration, SPPs were resonantly excited at the interfaces between MgF2 and Al (MgF2/Al) and between Ag and air (Ag/air). The thickness and the dielectric constants of the layers were evaluated from the ATR measurements. Short-circuit photocurrents, ISCs, as a function of the incident angle of the laser beam were observed simultaneously during the ATR measurements. In the ISC curves, large and small peaks were observed, and the peak angles of the ISC almost corresponded to the dip angles of the ATR curves due to the SPP excitations. Electric fields and optical absorptions in the cell were calculated using the dielectric constants and the film thickness obtained from the ATR measurements. The calculated absorption in the MC layer as a function of the incident angle corresponded to the ISC curve. It was thought that the optical absorption in the MC layer affected directly to the profile of the ISC. Furthermore, the calculated absorption in the cell with the prism and the MgF2 layer exhibited much larger than that of the cell without them. It was estimated that the photocurrents were enhanced by the excitation of SPPs in the ATR configuration.

  • Automatic Evaluation of the Appearance of Seam Puckers on Suits

    Tsunehiro AIBARA  Takehiro MABUCHI  Masanori IZUMIDA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1346-1352

    This paper deals with the fundamental problem of automatic assessment of appearance of seam puckers on suits, and suggests possibilities for practical usage. Presently, evaluations are done by inspectors who compare standard photographs of suits to test samples. In order to avoid human errors, however, a method of automatic evaluation is desired. We process the problem as pattern recognition. As a feature we use fractal dimensions. The fractal dimensions obtained from standard photographs are used as template patterns. To make it easier to calculate fractal dimensions, we plot a curve representing the appearance of seam puckers, from which fractal dimensions of the curve can be calculated. The seam puckers in gray-scale images are confused with the material's texture, so the seam puckers must be enhanced for a precise evaluation. By using the concept of variance, we select images with seam puckers and enhance only the images with seam puckers. This is the novel aspect of this work. Twenty suits are used for the evaluation experiment and we obtain a result almost the same to the evaluation gained by inspection. That is, the evaluation of 11 samples is the same as that gained by inspection, the results of 8 samples differ by 1 grade, and the evaluation of 1 sample has a 2-grade difference. The results are also compared to the evaluation of the system using the Daubechies wavelet feature. The result of comparison shows that the present method gives a better evaluation than the system using the Daubechies wavelet.

  • Optically Patternable Light-Emitting Devices Based on Conducting Polymers

    Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1017-1021

    Optically patternable light-emitting devices based on conducting polymers were fabricated and were characterized. The cathode of the devices is made with a semitransparent-Al film, which enables to photoinduced degradation of the polymers in air. The optically patternable devices were successfully made with poly (2-methoxy-5-dodecyloxy-p-phenylene vinylene) (MDOPPV), as well as with poly (3-dodecylthiophene) (PAT12). However, optical absorption study indicated that the patterning mechanism of the MDOPPV device is considerably different from that of the PAT12 device.

  • Reconstruction of Textured Urban 3D Model by Fusing Ground-Based Laser Range and CCD Images

    Huijing ZHAO  Ryosuke SHIBASAKI  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1429-1440

    In this paper, a method of fusing ground-based laser range image and CCD images for the reconstruction of textured 3D urban object is proposed. An acquisition system is developed to capture laser range image and CCD images simultaneously from the same platform. A registration method is developed using both laser range and CCD images in a coarse-to-fine process. Laser range images are registered with an assumption on sensor's setup, which aims at robustly detecting an initial configuration between the sensor's coordinate system of two views. CCD images are matched to refine the accuracy of the initial transformation, which might be degraded by improper sensor setup, unreliable feature extraction, or limited by low spatial resolution of laser range image. Textured 3D model is generated using planar faces for vertical walls and triangular cells for ground surface, trees and bushes. Through an outdoor experiment of reconstructing a building using six views of laser range and CCD images, it is demonstrated that textured 3D model of urban objects can be generated in an automated manner.

  • Discrimination of D-Amino Acids from L-Amino Acids Using Membrane Impedance Change

    Hardwell CHIBVONGODZE  Kenshi HAYASHI  Kiyoshi TOKO  

     
    PAPER-Sensor

      Vol:
    E83-C No:7
      Page(s):
    1028-1034

    There are methods used to test the optical purity of enantiomers; however, most of the simple methods are not precise and more complicated methods are better. As a result, these methods cannot be widely used for industrial purposes. The aim of this research is to design a sensor which can discriminate D-amino acids from L-amino acids. The designed sensor has chiral membranes and uses the technique of impedance change of these chiral membranes to discriminate the amino acids. We used a noise-FFT (Fast Fourier Transform) technique to determine the membrane impedance. When an enantiomer membrane resides in a chiral environment, (E*), diastereomeric interactions (E*-D) and (E*-L) are created, which may differ sufficiently in the arrangement of molecules of the membranes so as to permit the discrimination of optical substances due to the change in membrane characteristics. With increasing concentrations of the amino acids, the membrane resistance changes depended on the optical activity of the amino acids. The results suggest that the impedance changes of the chiral membrane with diastereomeric reaction can be used for the high-performance chemical sensor to measure the optical purity of different substances.

  • Space-Charge Conduction in a Copper Phthalocyanine Static Induction Transistor

    Shigekazu KUNIYOSHI  Masaaki IIZUKA  Kazuhiro KUDO  Kuniaki TANAKA  

     
    LETTER-Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1111-1113

    We have fabricated a static induction transistor structure by using copper phthalocyanine (CuPc) films. Its layer-structure is Au(drain)/CuPc/Al(gate)/CuPc/Au(source)/glass. The source-drain current is controlled by the Al gate bias-voltage when the drain voltage is positive but is almost independent of it when the drain voltage is negative. The current-voltage characteristics are governed by the space-charge-limited conduction which depends on shallow traps.

  • Facet Matching from an Uncalibrated Pair of Images

    Lukas THEILER  Houda CHABBI  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1395-1399

    Since for recognition tasks it is known that planar invariants are more easily obtained than others, decomposing a scene in terms of planar parts becomes very interresting. This paper presents a new approach to find the projections of planar surfaces in a pair of images. For this task we introduce the facet concept defined by linked edges (chains) and corners. We use collineations as projective information to match and verify their planarity. Our contribution consists in obtaining from an uncalibrated stereo pair of images a match of "planar" chains based on matched corners. Collineations are constrained by the fundamental matrix information and a Kalman filter approach is used to refine its computation.

  • 3D Reconstruction of Skin Surface from Image Sequence

    Takeshi YAMADA  Hideo SAITO  Shinji OZAWA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1415-1421

    This paper proposes a new method for reconstruction a shape of skin surface replica from shaded image sequence taken with different light source directions. Since the shaded images include shadows caused by surface height fluctuation, and specular and inter reflections, the conventional photometric stereo method is not suitable for reconstructing its surface accurately. In the proposed method, we choose measured intensity which does not include specular and inter reflections and self-shadows so that we can calculate accurate normal vector from the selected measured intensity using SVD (Singular Value Decomposition) method. The experimental results from real images demonstrate that the proposed method is effective for shape reconstruction from shaded images, which include specular and inter reflections and self-shadows.

  • Hybrid Defect Detection Method Based on the Shape Measurement and Feature Extraction for Complex Patterns

    Hilario Haruomi KOBAYASHI  Yasuhiko HARA  Hideaki DOI  Kazuo TAKAI  Akiyoshi SUMIYA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1338-1345

    The visual inspection of printed circuit boards (PCBs) at the final production stage is necessary for quality assurance and the requirements for an automated inspection system are very high. However, consistent inspection of patterns on these PCBs is very difficult due to pattern complexity. Most of the previously developed techniques are not sensitive enough to detect defects in complex patterns. To solve this problem, we propose a new optical system that discriminates pattern types existing on a PCB, such as copper, solder resist and silk-screen printing. We have also developed a hybrid defect detection technique to inspect discriminated patterns. This technique is based on shape measurement and features extraction methods. We used the proposed techniques in an actual automated inspection system, realizing real time transactions with a combination of hardware equipped with image processing LSIs and PC software. Evaluation with this inspection system ensures a 100% defect detection rate and a fairly low false alarm rate (0.06%). The present paper describes the inspection algorithm and briefly explains the automated inspection system.

6541-6560hit(8214hit)