Yaokun HU Xuanyu PENG Takeshi TODA
The subject must be motionless for conventional radar-based non-contact vital signs measurements. Additionally, the measurement range is limited by the design of the radar module itself. Although the accuracy of measurements has been improving, the prospects for their application could have been faster to develop. This paper proposed a novel radar-based adaptive tracking method for measuring the heart rate of the moving monitored person. The radar module is fixed on a circular plate and driven by stepping motors to rotate it. In order to protect the user’s privacy, the method uses radar signal processing to detect the subject’s position to control a stepping motor that adjusts the radar’s measurement range. The results of the fixed-route experiments revealed that when the subject was moving at a speed of 0.5 m/s, the mean values of RMSE for heart rate measurements were all below 2.85 beat per minute (bpm), and when moving at a speed of 1 m/s, they were all below 4.05 bpm. When subjects walked at random routes and speeds, the RMSE of the measurements were all below 6.85 bpm, with a mean value of 4.35 bpm. The average RR interval time of the reconstructed heartbeat signal was highly correlated with the electrocardiography (ECG) data, with a correlation coefficient of 0.9905. In addition, this study not only evaluated the potential effect of arm swing (more normal walking motion) on heart rate measurement but also demonstrated the ability of the proposed method to measure heart rate in a multiple-people scenario.
Yasuyuki KAWANISHI Hideaki NISHIHARA Hideki YAMAMOTO Hirotaka YOSHIDA Hiroyuki INOUE
Cyber-physical systems, in which ICT systems and field devices are interconnected and interlocked, have become widespread. More threats need to be taken into consideration when designing the security of cyber-physical systems. Attackers may cause damage to the physical world by attacks which exploit vulnerabilities of ICT systems, while other attackers may use the weaknesses of physical boundaries to exploit ICT systems. Therefore, it is necessary to assess such risks of attacks properly. A direct-access attack in the field of automobiles is the latter type of attacks where an attacker connects unauthorized equipment to an in-vehicle network directly and attempts unauthorized access. But it has been considered as less realistic and evaluated less risky than other threats via network entry points by conventional risk assessment methods. We focused on reassessing threats via direct access attacks in proposing effective security design procedures for cyber-physical systems based on a guideline for automobiles, JASO TP15002. In this paper, we focus on “fitting to a specific area or viewpoint” of such a cyber-physical system, and devise a new risk quantification method, RSS-CWSS_CPS based on CWSS, which is also a vulnerability evaluation standard for ICT systems. It can quantify the characteristics of the physical boundaries in cyber-physical systems.
Qi ZHOU Zhongyuan ZHOU Yixing GU Mingjie SHENG Peng HU Yang XIAO
This paper introduces the working principle of continuous wave (CW) illuminator and selects the test space by developing the wave impedance selection algorithm for the CW illuminator. For the vertical polarization and the horizontal polarization of CW illuminator, the law of wave impedance distribution after loading is analyzed and the influence of loading distribution on test space selection is studied. The selection principle of wave impedance based on incident field or total field at the monitoring point is analyzed.
Shohei HAMADA Koichi ICHIGE Katsuhisa KASHIWAGI Nobuya ARAKAWA Ryo SAITO
This paper proposes two accurate source-number estimation methods for array antennas and multi-input multi-output radar. Direction of arrival (DOA) estimation is important in high-speed wireless communication and radar imaging. Most representative DOA estimation methods require the source-number information in advance and often fail to estimate DOAs in severe environments such as those having low signal-to-noise ratio or large transmission-power difference. Received signals are often bandlimited or narrowband signals, so the proposed methods first involves denoising preprocessing by removing undesired components then comparing the original and denoised signal information. The performances of the proposed methods were evaluated through computer simulations.
Heart rate measurement for mm-wave FMCW radar based on phase analysis comprises a variety of noise. Furthermore, because the breathing and heart frequencies are so close, the harmonic of the breathing signal interferes with the heart rate, and the band-pass filter cannot solve it. On the other hand, because heart rates vary from person to person, it is difficult to choose the basic function of WT (Wavelet Transform). To solve the aforementioned difficulties, we consider performing time-frequency domain analysis on human skin surface displacement data. The PA-LI (Phase Accumulation-Linear Interpolation) joint ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) approach is proposed in this paper, which effectively enhances the signal's SNR, estimates the heart rate, and reconstructs the heartbeat signal. The experimental findings demonstrate that the proposed method can not only extract heartbeat signals with high SNR from the front direction, but it can also detect heart rate from other directions (e.g., back, left, oblique front, and ceiling).
Chen MIAO Peishuang NI Mengjie JIANG Yue MA Hui TANG Wen WU
This letter proposes a blind phase compensation method for the phase errors in the Multi-Carrier Multiple-input multiple-output (MIMO) radar, which decouples the range and DOA coupling. The phase errors under the Linear Frequency Modulated Continuous Waveform (LFMCW) scheme are firstly derived, followed with the signal processing steps. Further, multiple targets with certain velocities can be handled uniformly without pre-knowledge of the actual range information of the targets. The evaluations of the DOA estimation performance are carried out through simulations, which validate the effectiveness of the proposed method.
Jonghyeok LEE Sunghyun HWANG Sungjin YOU Woo-Jin BYUN Jaehyun PARK
To estimate angle, velocity, and range information of multiple targets jointly in FMCW MIMO radar, two-dimensional (2D) MUSIC with matched filtering and FFT algorithm is proposed. By reformulating the received FMCW signal of the colocated MIMO radar, we exploit 2D MUSIC to estimate the angle and Doppler frequency of multiple targets. Then by using a matched filter together with the estimated angle and Doppler frequency and FFT operation, the range of the target is estimated. To effectively estimate the parameters of multiple targets with large distance differences, we also propose a successive interference cancellation method that uses the orthogonal projection. That is, rather than estimating the multiple target parameters simultaneously using 2D MUSIC, we estimate the target parameters sequentially, in which the parameters of the target having strongest reflected power are estimated first and then, their effect on the received signal is canceled out by using the orthogonal projection. Simulations verify the performance of the proposed algorithm.
Sohee LIM Seongwook LEE Jung-Hwan CHOI Jungmin YOON Seong-Cheol KIM
This paper presents an interference suppression and signal restoration technique that can create the clean signals required by automotive frequency-modulated continuous wave radar systems. When a radar signal from another radar system interferes with own transmitted radar signal, the target detection performance is degraded. This is because the beat frequency corresponding to the target cannot be estimated owing to the increase in the noise floor. In this case, advanced weighted-envelope normalization or wavelet denoising can be used to mitigate the effect of the interference; however, these methods can also lead to the loss of the desired signal containing the range and velocity information of the target. Therefore, we propose a method based on an autoregressive model to restore a signal damaged by mutual interference. The method uses signals that are not influenced by the interference to restore the signal. In experiments conducted using two different automotive radar systems, our proposed method is demonstrated to effectively suppress the interference and restore the desired signal. As a result, the noise floor resulting from the mutual interference was lowered and the beat frequency corresponding to the desired target was accurately estimated.
You-Sun WON Dongseung SHIN Miryong PARK Sohee JUNG Jaeho LEE Cheolhyo LEE Yunjeong SONG
This paper reports a 24GHz ISM band radar module for pedestrian detection in crosswalks. The radar module is composed of an RF transceiver board, a baseband board, and a microcontroller unit board. The radar signal is a sawtooth frequency-modulated continuous-wave signal with a center frequency of 24.15GHz, a bandwidth of 200MHz, a chirp length of 80µs, and a pulse repetition interval of 320µs. The radar module can detect a pedestrian on a crosswalk with a width of 4m and a length of 14m. The radar outputs the range, angle, and speed of the detected pedestrians every 50ms by radar signal processing and consumes 7.57W from 12V power supply. The size of the radar module is 110×70mm2.
Yuanyuan XU Wei LI Wei WANG Dan WU Lai HE Jintao HU
A 19.1-to-20.4 GHz sigma-delta fractional-N frequency synthesizer with two-point modulation (TPM) for frequency modulated continuous wave (FMCW) radar applications is presented. The FMCW synthesizer proposes a digital and voltage controlled oscillator (D/VCO) with large continuous frequency tuning range and small digital controlled oscillator (DCO) gain variation to support TPM. By using TPM technique, it avoids the correlation between loop bandwidth and chirp slope, which is beneficial to fast chirp, phase noise and linearity. The start frequency, bandwidth and slope of the FMCW signal are all reconfigurable independently. The FMCW synthesizer achieves a measured phase noise of -93.32 dBc/Hz at 1MHz offset from a 19.25 GHz carrier and less than 10 µs locking time. The root-mean-square (RMS) frequency error is only 112 kHz with 94 kHz/µs chirp slope, and 761 kHz with a fast slope of 9.725 MHz/µs respectively. Implemented in 65 nm CMOS process, the synthesizer consumes 74.3 mW with output buffer.
Takahiro MATSUMOTO Hideyuki TORII Yuta IDA Shinya MATSUFUJI
In this paper, we theoretically analyse the influence of intersymbol interference (ISI) and continuous wave interference (CWI) on the bit error rate (BER) performance of the spread spectrum (SS) system using a real-valued Huffman sequence under the additive white Gaussian noise (AWGN) environment. The aperiodic correlation function of the Huffman sequence has zero sidelobes except the shift-end values at the left and right ends of shift. The system can give the unified communication and ranging system because the output of a matched filter (MF) is the ideal impulse by generating transmitted signal of the bit duration T=NTc, N=2n, n=1,2,… from the sequence of length M=2kN+1, k=0,1,…, where Tc is the chip duration and N is the spreading factor. As a result, the BER performance of the system is improved with decrease in the absolute value of the shift-end value, and is not influenced by ISI if the shift-end value is almost zero-value. In addition, the BER performance of the system of the bit duration T=NTc with CWI is improved with increase in the sequence length M=2kN+1, and the system can decrease the influence of CWI.
Seongwook LEE Young-Jun YOON Seokhyun KANG Jae-Eun LEE Seong-Cheol KIM
In this paper, we propose a received signal interpolation method for enhancing the performance of multiple signal classification (MUSIC) algorithm. In general, the performance of the conventional MUSIC algorithm is very sensitive to signal-to-noise ratio (SNR) of the received signal. When array elements receive the signals with nonuniform SNR values, the resolution performance is degraded compared to elements receiving the signals with uniform SNR values. Hence, we propose a signal calibration technique for improving the resolution of the algorithm. First, based on original signals, rough direction of arrival (DOA) estimation is conducted. In this stage, using frequency-domain received signals, SNR values of each antenna element in the array are estimated. Then, a deteriorated element that has a relatively lower SNR value than those of the other elements is selected by our proposed scheme. Next, the received signal of the selected element is spatially interpolated based on the signals received from the neighboring elements and the DOA information extracted from the rough estimation. Finally, fine DOA estimation is performed again with the calibrated signal. Simulation results show that the angular resolution of the proposed method is better than that of the conventional MUSIC algorithm. Also, we apply the proposed scheme to actual data measured in the testing ground, and it gives us more enhanced DOA estimation result.
Minjia SHI Jie TANG Maorong GE
The definitions of the Lee complete ρ weight enumerator and the exact complete ρ weight enumerator over Mn×s(F2[u,v]/
In this paper, the performance of a vehicle information sharing (VIS) system for an intersection collision warning system (ICWS) is analyzed. The on-board unit (OBU) of the ICWS sharing obstacle detection sensor information (ICWS-ODSI) is mounted on a vehicle, and it obtains information about the surrounding vehicles, such as their position and velocity, by its in-vehicle obstacle detection sensors. These information are shared with other vehicles via an intervehicle communication network. In this analysis, a T-junction is assumed as the road environment for the theoretical analysis of the VIS performance in terms of the mean of entire vehicle information acquiring probability (MEVIAP). The MEVIAP on OBU penetration rate indicated that the ICWS-ODSI is superior to the conventional VIS system that only shares its own individual driving information via an intervehicle communication network. Furthermore, the MEVIAP on the sensing range of the ICWS-ODSI is analyzed, and it was found that the ISO15623 sensor used for the forward vehicle collision warning system becomes a candidate for the in-vehicle detection sensor of ICWS-ODSI.
Naoki HASEGAWA Naoki SHINOHARA Shigeo KAWASAKI
The high performance GaN power amplifier circuit operating at 7.1 GHz was demonstrated for potential use such as in a space ground station. First, the GaN HEMT chips were investigated for the high power amplifier circuit design. And next, the designed amplifier circuits matching with the load and source impedance of the non-linear models were fabricated. From measurement, the AB-class power amplifier circuit with the four-cell chip showed the power added efficiency (PAE) of 42.6% and output power with 41.7dBm at -3dB gain compression. Finally, the good performance of the power amplifier was confirmed in a 20-way radial power combiner with the PAE of 17.4% and output power of 52.6 dBm at -3dB gain compression.
This paper proposes a new class of Hilbert pairs of almost symmetric orthogonal wavelet bases. For two wavelet bases to form a Hilbert pair, the corresponding scaling lowpass filters are required to satisfy the half-sample delay condition. In this paper, we design simultaneously two scaling lowpass filters with the arbitrarily specified flat group delay responses at ω=0, which satisfy the half-sample delay condition. In addition to specifying the number of vanishing moments, we apply the Remez exchange algorithm to minimize the difference of frequency responses between two scaling lowpass filters, in order to improve the analyticity of complex wavelets. The equiripple behavior of the error function can be obtained through a few iterations. Therefore, the resulting complex wavelets are orthogonal and almost symmetric, and have the improved analyticity. Finally, some examples are presented to demonstrate the effectiveness of the proposed design method.
Byungjoon KIM Duksoo KIM Youngjoon LIM Dooheon YANG Sangwook NAM Jae-Hoon SONG
This paper proposes a high clutter-rejection technique for wall-penetrating frequency-modulated continuous-wave (FMCW) radar. FMCW radars are widely used, as they moderate the receiver saturation problem in wall-penetrating applications by attenuating short-range clutter such as wall-clutter. However, conventional FMCW radars require a very high-order high-pass filter (HPF) to attenuate short-range clutter. A delay-line (DL) is exploited to overcome this problem. Time-delay shifts beat frequencies formed by reflection waves. This means that a proper time-delay increases the ratio of target-beat frequency to clutter-beat frequency. Consequently, low-order HPF fully attenuates short-range clutter. A third-order HPF rejects more than 20 dB and 30 dB for clutter located at 6 m and 3 m, respectively, with a target located at 9 m detection with a 10,000 GHz/s chirp rate and a 28 ns delay-line.
Jung-Hwan CHOI Han-Byul LEE Ji-Won CHOI Seong-Cheol KIM
With extensive use of automotive radars, mutual interference between radars has become a crucial issue, since it increases the noise floor in the frequency domain triggering frequent false alarms and unsafe decision. This paper introduces a mathematical model for a frequency-modulated continuous-wave (FMCW) radar in interfering environments. In addition, this paper proposes a time-domain interference suppression method to provide anti-interference capability regardless of the signal-to-interference ratio. Numerical results are presented to verify the performance of a 77GHz FMCW radar systme with the proposed method in interference-rich environments.
We propose an effective technique for estimation of targets by ground penetrating radar (GPR) using model-based compressive sensing (CS). We demonstrate the technique's performance by applying it to detection of buried landmines. The conventional CS algorithm enables the reconstruction of sparse subsurface images using much reduced measurement by exploiting its sparsity. However, for landmine detection purposes, CS faces some challenges because the landmine is not exactly a point target and also faces high level clutter from the propagation in the medium. By exploiting the physical characteristics of the landmine using model-based CS, the probability of landmine detection can be increased. Using a small pixel size, the landmine reflection in the image is represented by several pixels grouped in a three dimensional plane. This block structure can be used in the model based CS processing for imaging the buried landmine. The evaluation using laboratory data and datasets obtained from an actual mine field in Cambodia shows that the model-based CS gives better reconstruction of landmine images than conventional CS.
Toshiaki KURI Atsushi KANNO Tetsuya KAWANISHI
A re-configurable wavelength de-multiplexer for wave-length-division-multiplexed (WDM) radio-over-fiber (RoF) systems, which is specially designed for delivering frequency-modulated continuous-wave (FM-CW) signals, is newly developed. The principle and characteristics of the developed de-multiplexer are described in detail. Then the de-multiplexing performances of 4-channel WDM 32-GHz-band, 8-channel WDM 48-GHz-band, and 5-channel WDM 96-GHz-band FM-CW RoF signals are evaluated with the de-multiplexer.