The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DASH(32hit)

1-20hit(32hit)

  • A User Allocation Method for DASH Multi-Servers Considering Coalition Structure Generation in Cooperative Game Open Access

    Sumiko MIYATA  Ryoichi SHINKUMA  

     
    INVITED PAPER

      Pubricized:
    2023/11/09
      Vol:
    E107-A No:4
      Page(s):
    611-618

    Streaming systems that can maintain Quality of Experience (QoE) for users have attracted much attention because they can be applied in various fields, such as emergency response training and medical surgery. Dynamic Adaptive Streaming over HTTP (DASH) is a typical protocol for streaming system. In order to improve QoE in DASH, a multi-server system has been presented by pseudo-increasing bandwidth through multiple servers. This multi-server system is designed to share streaming content efficiently in addition to having redundant server resources for each streaming content, which is excellent for fault tolerance. Assigning DASH server to users in these multi-servers environment is important to maintain QoE, thus a method of server assignment of users (user allocation method) for multi-servers is presented by using cooperative game theory. However, this conventional user allocation method does not take into account the size of the server bandwidth, thus users are concentrated on a particular server at the start of playback. Although the average required bit rate of video usually fluctuates, bit rate fluctuations are not taken into account. These phenomena may decrease QoE. In this paper, we propose a novel user allocation method using coalition structure generation in cooperative game theory to improve the QoE of all users in an immediate and stable manner in DASH environment. Our proposed method can avoid user concentration, since the bandwidth used by the overall system is taken into account. Moreover, our proposed method can be performed every time the average required bit rate changes. We demonstrate the effectiveness of our method through simulations using Network Simulator 3 (NS3).

  • GAN-based Image Translation Model with Self-Attention for Nighttime Dashcam Data Augmentation

    Rebeka SULTANA  Gosuke OHASHI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/06/27
      Vol:
    E106-A No:9
      Page(s):
    1202-1210

    High-performance deep learning-based object detection models can reduce traffic accidents using dashcam images during nighttime driving. Deep learning requires a large-scale dataset to obtain a high-performance model. However, existing object detection datasets are mostly daytime scenes and a few nighttime scenes. Increasing the nighttime dataset is laborious and time-consuming. In such a case, it is possible to convert daytime images to nighttime images by image-to-image translation model to augment the nighttime dataset with less effort so that the translated dataset can utilize the annotations of the daytime dataset. Therefore, in this study, a GAN-based image-to-image translation model is proposed by incorporating self-attention with cycle consistency and content/style separation for nighttime data augmentation that shows high fidelity to annotations of the daytime dataset. Experimental results highlight the effectiveness of the proposed model compared with other models in terms of translated images and FID scores. Moreover, the high fidelity of translated images to the annotations is verified by a small object detection model according to detection results and mAP. Ablation studies confirm the effectiveness of self-attention in the proposed model. As a contribution to GAN-based data augmentation, the source code of the proposed image translation model is publicly available at https://github.com/subecky/Image-Translation-With-Self-Attention

  • A Low-Latency 4K HEVC Multi-Channel Encoding System with Content-Aware Bitrate Control for Live Streaming

    Daisuke KOBAYASHI  Ken NAKAMURA  Masaki KITAHARA  Tatsuya OSAWA  Yuya OMORI  Takayuki ONISHI  Hiroe IWASAKI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/09/30
      Vol:
    E106-D No:1
      Page(s):
    46-57

    This paper describes a novel low-latency 4K 60 fps HEVC (high efficiency video coding)/H.265 multi-channel encoding system with content-aware bitrate control for live streaming. Adaptive bitrate (ABR) streaming techniques, such as MPEG-DASH (dynamic adaptive streaming over HTTP) and HLS (HTTP live streaming), spread widely on Internet video streaming. Live content has increased with the expansion of streaming services, which has led to demands for traffic reduction and low latency. To reduce network traffic, we propose content-aware dynamic and seamless bitrate control that supports multi-channel real-time encoding for ABR, including 4K 60 fps video. Our method further supports chunked packaging transfer to provide low-latency streaming. We adopt a hybrid architecture consisting of hardware and software processing. The system consists of multiple 4K HEVC encoder LSIs that each LSI can encode 4K 60 fps or up to high-definition (HD) ×4 videos efficiently with the proposed bitrate control method. The software takes the packaging process according to the various streaming protocol. Experimental results indicate that our method reduces encoding bitrates obtained with constant bitrate encoding by as much as 56.7%, and the streaming latency over MPEG-DASH is 1.77 seconds.

  • QoE-Aware Stable Adaptive Video Streaming Using Proportional-Derivative Controller for MPEG-DASH Open Access

    Ryuta SAKAMOTO  Takahiro SHOBUDANI  Ryosuke HOTCHI  Ryogo KUBO  

     
    PAPER-Network

      Pubricized:
    2020/09/24
      Vol:
    E104-B No:3
      Page(s):
    286-294

    In video distribution services such as video streaming, the providers must satisfy the various quality demands of the users. One of the human-centric indexes used to assess video quality is the quality of experience (QoE). In video streaming, the video bitrate, video freezing time, and video bitrate switching are significant determiners of QoE. To provide high-quality video streaming services, adaptive streaming using the Moving Picture Experts Group dynamic adaptive streaming over Hypertext Transfer Protocol (MPEG-DASH) is widely utilized. One of the conventional bitrate selection methods for MPEG-DASH selects the bitrate such that the amount of buffered data in the playback buffer, i.e., the playback buffer level, can be maintained at a constant value. This method can avoid buffer overflow and video freezing based on feedback control; however, this method induces high-frequency video bitrate switching, which can degrade QoE. To overcome this issue, this paper proposes a bitrate selection method in an adaptive video steaming for MPEG-DASH to improve the QoE by minimizing the bitrate fluctuation. To this end, the proposed method does not change the bitrate if the playback buffer level is not around its upper or lower limit, corresponding to the full or empty state of the playback buffer, respectively. In particular, to avoid buffer overflow and video freezing, the proposed method selects the bitrate based on proportional-derivative (PD) control to maintain the playback buffer level at a target level, which corresponds to an upper or lower threshold of the playback buffer level. Simulations confirm that, the proposed method offers better QoE than the conventional method for users with various preferences.

  • Methods for Adaptive Video Streaming and Picture Quality Assessment to Improve QoS/QoE Performances Open Access

    Kenji KANAI  Bo WEI  Zhengxue CHENG  Masaru TAKEUCHI  Jiro KATTO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1240-1247

    This paper introduces recent trends in video streaming and four methods proposed by the authors for video streaming. Video traffic dominates the Internet as seen in current trends, and new visual contents such as UHD and 360-degree movies are being delivered. MPEG-DASH has become popular for adaptive video streaming, and machine learning techniques are being introduced in several parts of video streaming. Along with these research trends, the authors also tried four methods: route navigation, throughput prediction, image quality assessment, and perceptual video streaming. These methods contribute to improving QoS/QoE performance and reducing power consumption and storage size.

  • A Quality-Level Selection for Adaptive Video Streaming with Scalable Video Coding

    Shungo MORI  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    824-831

    In this paper, we propose a quality-level selection method for adaptive video streaming with scalable video coding (SVC). The proposed method works on the client with the dynamic adaptive streaming over HTTP (DASH) with SVC. The proposed method consists of two components: introducing segment group and a buffer-aware layer selection algorithm. In general, quality of experience (QoE) performance degrades due to stalling (playback buffer underflow), low playback quality, frequent quality-level switching, and extreme-down quality switching. The proposed algorithm focuses on reducing the frequent quality-level switching, and extreme-down quality switching without increasing stalling and degrading playback quality. In the proposed method, a SVC-DASH client selects a layer every G segments, called a segment group to prevent frequent quality-level switching. In addition, the proposed method selects the quality of a layer based on a playback buffer in a layer selection algorithm for preventing extreme-down switching. We implement the proposed method on a real SVC-DASH system and evaluate its performance by subjective evaluations of multiple users. As a result, we confirm that the proposed algorithm can obtain better mean opinion score (MOS) value than a conventional SVC-DASH, and confirm that the proposed algorithm is effective to improve QoE performance in SVC-DASH.

  • A Video-Quality Controller for QoE Enhancement in HTTP Adaptive Streaming

    Takumi KUROSAKA  Shungo MORI  Masaki BANDAI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1163-1174

    In this paper, we propose a quality-level control method based on quality of experience (QoE) characteristics for HTTP adaptive streaming (HAS). The proposed method works as an adaptive bitrate controller on the HAS client. The proposed method consists of two operations: buffer-aware control and QoE-aware control. We implement the proposed method on an actual dynamic adaptive streaming over HTTP (DASH) program and evaluate the QoE performance of the proposed method via both objective and subjective evaluations. The results show that the proposed method effectively improves both objective and subjective QoE performances by preventing stalling events and quality-level switchings that have a negative influence on subjective QoE performance.

  • A Probabilistic Adaptation Method for HTTP Low-Delay Live Streaming over Mobile Networks

    Hung T. LE  Nam PHAM NGOC  Anh T. PHAM  Truong Cong THANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/11/09
      Vol:
    E100-D No:2
      Page(s):
    379-383

    The study focuses on the adaptation problem for HTTP low-delay live streaming over mobile networks. In this context, the client's small buffer could be easily underflown due to throughput variations. To maintain seamless streaming, we present a probabilistic approach to adaptively decide the bitrate for each video segment by taking into account the instant buffer level. The experimental results show that the proposed method can significantly reduce buffer underflows while providing high video bitrates.

  • A Synchronization and T-STD Model for 3D Video Distribution and Consumption over Hybrid Network

    Kugjin YUN  Won-sik CHEONG  Kyuheon KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/07/13
      Vol:
    E98-D No:10
      Page(s):
    1884-1887

    Recently, standard organizations of ATSC, DVB and TTA have been working to design various immersive media broadcasting services such as the hybrid network-based 3D video, UHD video and multiple views. This letter focuses on providing a new synchronization and transport system target decoder (T-STD) model of 3D video distribution based on heterogeneous transmission protocol in a hybrid network environment, where a broadcasting network and broadband (IP) network are combined. On the basis of the experimental results, the proposed technology has been proved to be successfully used as a core element for synchronization and T-STD model in a hybrid network-based 3D broadcasting. It has been also found out that it could be used as a base technique for various IP associated hybrid broadcasting services.

  • Quality of Experience Study on Dynamic Adaptive Streaming Based on HTTP

    Yun SHEN  Yitong LIU  Hongwen YANG  Dacheng YANG  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    62-70

    In this paper, the Quality of Experience (QoE) on Dynamic Adaptive Streaming based on HTTP (DASH) is researched. To study users' experience on DASH, extensive subjective tests are firstly designed and conducted, based on which, we research QoE enhancement in DASH and find that DASH ensures more fluent playback (less stall) than constant bitrate (CBR) streaming to promote users' satisfaction especially in mobile networks. Then we adopt two-way analysis of variance (ANOVA) tests in statistics to identify the effect of specific factors (segment bitrate, bitrate fluctuation pattern, and bitrate switching) that impair users' experience on DASH. The impairment functions are then derived for these influence factors based on the Primacy and Recency Effect, a psychological phenomenon that has been proved to exist in users' experience on DASH in this paper. And the final QoE evaluation model is proposed to provide high correlation assessment for QoE of DASH. The good performance of our QoE model is validated by the subjective tests. In addition, our QoE study on DASH is also applied for QoE management to propose a QoE-based bitrate adaptation strategy, which promotes users' experience on DASH more strongly than the strategy based on QoS.

  • Effect of Multiple Antennas on the Transport Capacity in Large-Scale Ad Hoc Networks

    Won-Yong SHIN  Koji ISHIBASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:10
      Page(s):
    3113-3119

    A one-dimensional ad hoc network with a single active source–destination pair is analyzed in terms of transport capacity, where each node uses multiple antennas. The analysis is based on using a multi-hop opportunistic routing transmission in the presence of fading. Specifically, the lower and upper bounds on the transport capacity are derived and their scaling law is analyzed as the node density, λ, is assumed to be infinitely large. The lower and upper bounds are shown to have the same scaling (ln λ)1/α, where α denotes the path-loss exponent. We also show that using multiple antennas at each node does not fundamentally change the scaling law.

  • Fabrication and Characterization of Ferroelectric Poly(Vinylidene Fluoride–Trifluoroethylene) (P(VDF-TrFE)) Thin Film on Flexible Substrate by Detach-and-Transferring

    Woo Young KIM  Hee Chul LEE  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    860-864

    In this paper, a 60 nm-thick ferroelectric film of poly(vinylidene fluoride–trifluoroethylene) on a flexible substrate of aluminum foil was fabricated and characterized. Compared to pristine silicon wafer, Al-foil has very large root-mean-square (RMS) roughness, thus presenting challenges for the fabrication of flat and uniform electronic devices on such a rough substrate. In particular, RMS roughness affects the leakage current of dielectrics, the uniformity of devices, and the switching time in ferroelectrics. To avoid these kinds of problems, a new thin film fabrication method adopting a detach-and-transfer technique has been developed. Here, 'detach' means that the ferroelectric film is detached from a flat substrate (sacrificial substrate), and 'transfer' refers to the process of the detached film being moved onto the rough substrate (main substrate). To characterize the dielectric property of the transferred film, polarization and voltage relationships were measured, and the results showed that a hysteresis loop could be obtained with low leakage current.

  • Evaluation of Fractal Image Coding

    Hiroshi OHNO  Kiyoharu AIZAWA  Mitsutoshi HATORI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1907-1909

    Fractal image coding using iterated transformations compresses image data by exploiting the self–similarity of an image. Its compression performance has already been discussed in [2] and several other papers. However the relation between the performance and the self–similarity remains unclear. In this paper, we evaluate fractal coding from the perspective of this relationship.

  • Stuck–Open Fault Detection in CMOS Circuits Using Single Test Patterns

    Enrico MACII  Qing XU  

     
    LETTER-Computer Aided Design (CAD)

      Vol:
    E77-A No:11
      Page(s):
    1977-1979

    Transistor stuck–open faults in CMOS devices are such that they force combinational circuits to exhibit sequential behaviors. It has been proved that, in general, stuck–open faults can not be modeled as stuck–at faults and, therefore, a sequence of two consecutive test vectors is necessary to guarantee stuck–open fault detection. In this paper we propose a technique to modify CMOS circuits in such a way that any stuck–open fault in the circuit can be detected using only a single test pattern. The amount of additional logic required to achieve the goal is rather limited: Two pass transistors, one input line, and one inverter (or buffer) at the output of the circuit are sufficient to make stuck–open faults detectable by test patterns generated by usual stuck–at fault test generators.

  • Study for Signal Processing to Survey Pulsars Using Noise Suppression Filter Based on Average Spectrum

    Naoki MIKAMI  Tsuneaki DAISHIDO  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1904-1906

    This letter proposes the method using a filter to suppress the very large noise obstructive to the radio pulsar surveys. This noise suppression filter is constructed from the average of the amplitude spectrum of pulsar signal for each channel. Using this method, the dispersion measure, one of the important parameters in the pulsar surveys, can easily be extracted.

  • A Dynamic Bias Current Technique for a Bipolar Exponential–Law Element and a CMOS Square–Law Element Usable with Low Supply Voltage

    Katsuji KIMURA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1922-1928

    An emitter–coupled pair with a dynamic bias current and a source–coupled pair with a dynamic bias current are proposed as an exponential–law element and a square–law element that operate as a floating bipolar junction transistor (BJT) and a floating MOS field–effect transistor (MOSFET). In bipolar technology, a hyperbolic sine function circuit and a hyperbolic cosine function circuit are easily obtained by subtracting and summing the output currents of two symmetrical exponential–law elements with positive and negative input signals. In the same manner, an operational transconductance amplifier (OTA) and a squaring circuit are obtained by subtracting and summing the output currents of two symmetrical square-law elements with positive and negative input signals in CMOS technology. The proposed OTA and squaring circuit possess the widest input voltage range ever reported.

  • Bifurcations of the Quasi–Periodic Solutions of a Coupled Forced van der Pol Oscillator

    Olivier PAPY  Hiroshi KAWAKAMI  

     
    PAPER-Bifurcation of van der Pol Oscillators

      Vol:
    E77-A No:11
      Page(s):
    1788-1793

    In this paper we study the bifurcation phenomena of quasi–periodic states of a model of the human circadian rhythm, which is described by a system of coupled van der Pol equations with a periodic external forcing term. In the system a periodic or quasi–periodic solution corresponds to a synchronized or desynchronized state of the circadian rhythm, respectively. By using a stroboscopic mapping, called a Poincar mapping, the periodic or quasi–periodic solution is reduced to a fixed point or an invariant closed curve (ab. ICC). Hence we can discuss the bifurcations for the periodic and quasi–periodic solutions by considering that of the fixed point and ICC of the mapping. At first, the geometrical behavior of the 3 generic bifurcations, i.e., tangent, Hopf and period doublig bifurcations, of the periodic solutions is given, Then, we use a qualitative approach to bring out the similar behavior for the bifurcations of the periodic and quasi–periodic solutions in the phase space and in the Poincarsection respectively. At last, we show bifurcation diagrams concerning both periodic and quasi–periodic solutions, in different parameter planes. For the ICC, we concentrate our attention on the period doubling cascade route to chaos, the folding of the parameter plane, the windows in the chaos and the occurrence of the type I intermittency.

  • "Deterministic Diffusion" in a Neural Network Model

    Hideo MATSUDA  Akihiko UCHIYAMA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1879-1881

    This paper describes that a neural network, which consists of neurons with piecewise–linear sigmoid characteristics, is able to approximate any piecewise–linear map with origin symmetry. The neural network can generate "deterministic diffusion" originating from its diffusive trajectory.

  • Considerations for Computational Efficiency of Spectral Domain Moment Method

    Yasufumi SASAKI  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1948-1950

    An efficient full–wave spectral domain moment method is developed to compute the current distribution and the radiation associated with microstrip discontinuities. Two techniques are used to increase the efficiency of the method of moments algorithm so that a transmission line of moderate electrical size can be analyzed in reasonable time.

  • Bifurcations of Quasi–Periodic Responses in Coupled van der Pol Oscillators with External Force

    Tetsuya YOSHINAGA  Hiroshi KAWAKAMI  

     
    PAPER-Bifurcation of van der Pol Oscillators

      Vol:
    E77-A No:11
      Page(s):
    1783-1787

    Bifurcations of quasi–periodic responses in an oscillator described by conductively coupled van der Pol equations with a sinusoidal forcing term are investigated. According to the variation of three base frequencies, i.e., two natural frequencies of oscillators and the forcing frequency, various nonlinear phenomena such as harmonic or subharmonic synchronization, almost synchronization and complete desynchronization are ovserved. The most characteristic phenomenon observed in the four–dimensional nonautonomous system is the occurrence of a double Hopf bifurcation of periodic solutions. A quasi–periodic solution with three base spectra, which is generated by the double Hopf bifurcation, is studied through an investigation of properties of limit cycles observed in an averaged system for the original nonautonomous equations. The oscillatory circuit is particularly motivated by analysis of human circadian rhythms. The transition from an external desynchronization to a complete desynchronization in human rest–activity can be referred to a mechanism of the bifurcation of quasi–periodic solutions with two and three base spectra.

1-20hit(32hit)