The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DC offset cancel(6hit)

1-6hit
  • A Triple-Band WCDMA Direct Conversion Receiver IC with Reduced Number of Off-Chip Components and Digital Baseband Control Signals

    Osamu WATANABE  Rui ITO  Toshiya MITOMO  Shigehito SAIGUSA  Tadashi ARAI  Takehiko TOYODA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    837-843

    This paper presents a triple-band WCDMA direct conversion receiver (DCR) IC that needs a small number of off-chip components and control signals from digital baseband (DBB) IC. The DCR IC consists of 3 quadrature demodulators (QDEMs) with on-chip impedance matching circuit and an analog baseband block (ABB) that contains a low-pass filter (LPF) with fc automatic tuning circuit using no off-chip components and a linear-in-dB variable-gain amplifier (VGA) with on-chip analog high-pass filter (HPF). In order to make use of DBB control-free DC offset canceler, the DCR is designed to avoid large gain change under large interference that causes long transient response. In order to realize that characteristic without increasing quiescent current, the QDEM is used that employs class AB input stage and low-noise common mode feedback (CMFB) output stage. The DCR IC was fabricated in a SiGe BiCMOS process and occupies about 2.9 mm3.0 mm. The DCR needs SAW filters only for off-chip components and a gain control signal from DBB IC for AGC loop. The IIP3 of over -4.4 dBm for small signal input level and that of over +1.9 dBm for large signal input level are achieved. The gain compression of the desired signal is less than 0.3 dB for ACS Case-II condition.

  • Fully Differential Direct-Conversion Receiver for W-CDMA Reducing DC-Offset Variation

    Hiroshi YOSHIDA  Takehiko TOYODA  Ichiro SETO  Ryuichi FUJIMOTO  Osamu WATANABE  Tadashi ARAI  Tetsuro ITAKURA  Hiroshi TSURUMI  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    901-908

    A fully differential direct conversion receiver IC for W-CDMA is presented. The receiver IC consists of an LNA, a quadrature demodulator, low-pass filters (LPFs), and variable gain amplifiers (VGAs). In order to suppress DC offset, which is the most important issue in a direct conversion system, an active harmonic mixer is applied to the quadrature demodulator. Furthermore, a receiving system, including the LNA and an RF filter, adopts a differential architecture to reduce local signal leakage, which generates DC offset. Performance of the entire receiving system was evaluated and DC offset in steady state was measured at only 40 mV. Moreover, DC offset variation at the LNA gain change, which has the largest affect on the receiving performance, was limited to 70 mV, which is less than -10 dB compared to desired signal strength. It was confirmed by computer simulation that the DC offset variation at the LNA gain change did not degrade bit error rate (BER) performance at all.

  • A Baseband Gain-Controlled Amplifier with a Linear-in-dB Gain Range from 14 dB to 76 dB and a Fixed Corner Frequency DC Offset Canceler

    Tadashi ARAI  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    909-914

    A linear-in-dB gain-control amplifier for direct conversion systems employs linearized transconductors in a core amp, a dc offset canceler, and a gain control circuit. The offset compensation circuit achieves a constant corner frequency over a gain range of 14 to 76 dB by simultaneous tuning of the transconductors.

  • A 1-V 2-GHz CMOS Up-Converter Using Self-Switching Mixers

    Toshiyuki UMEDA  Shoji OTAKA  Kenji KOJIMA  Tetsuro ITAKURA  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    262-267

    This paper describes a low-power-supply 2-GHz CMOS up-converter. A current-mode mixing method using current adding and self-switching mixers is proposed for 1-V operation. The current-mode up-converter achieves conversion gain of 6.7 dB and linearity of 6.5-dBm OIP3 at 1 V. Balanced configuration and DC offset canceller reduce LO leakage below -40 dBc even with 20-mV Vth mismatches. The bias circuit of the IC is designed to maintain constant conversion gain for variation of temperature for practical usage. The measurement results indicate the proposed up-converter is applicable for future wireless systems.

  • System-Level Compensation Approach to Overcome Signal Saturation, DC Offset, and 2nd-Order Nonlinear Distortion in Linear Direct Conversion Receiver

    Hiroshi TSURUMI  Miyuki SOEYA  Hiroshi YOSHIDA  Takafumi YAMAJI  Hiroshi TANIMOTO  Yasuo SUZUKI  

     
    PAPER

      Vol:
    E82-C No:5
      Page(s):
    708-716

    The architecture and control procedure for a direct conversion receiver are investigated for a linear modulation scheme. The proposed design techniques maintain receiver linearity despite various types of signal distortion. The techniques include the fast gain control procedure for receiving a control channel for air interface connection, DC offset canceling in both analog and digital stages, and 2nd-order intermodulation distortion canceling in an analog down-conversion stage. Experimental and computer simulation results on PHS (Personal Handy-phone System) parameters, showed that required linear modulation performance was achieved and thus the applicability of the proposed techniques was demonstrated.

  • Differential Analog Data Path DC Offset Calibration Methods

    Takeo YASUDA  Hajime ANDOH  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    301-306

    DC offset causes performance degradation in signal processing systems especially for high-speed applications. A new offset cancellation method that relaxes the requirement for the offset of the circuit components in the differential analog data path to about 10 times larger is introduced. This method moves the adjusting target from analog-to-digital converter (ADC) to its input buffer and adjusts DC level of ADC input to its center before the final offset cancellation. It eliminates post-production adjustment such as fuse trimming, which increases the cost and TAT in manufacturing and testing. Execution and simulation times are shortened down to 1/9 for less settling time in buffer and with improved logic. An automatic quick offset calibration circuit is implemented in a small silicon space in a high-speed hard disk drive (HDD) channel with 0.25-µm four-layer metal CMOS process. The measured data show this method works effectively in this system.