The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DF(310hit)

41-60hit(310hit)

  • A Novel Data-Aided Feedforward Timing Estimator for Burst-Mode Satellite Communications

    Kang WU  Tianheng XU  Yijun CHEN  Zhengmin ZHANG  Xuwen LIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:10
      Page(s):
    1895-1899

    In this letter, we investigate the problem of feedforward timing estimation for burst-mode satellite communications. By analyzing the correlation property of frame header (FH) acquisition in the presence of sampling offset, a novel data-aided feedforward timing estimator that utilizes the correlation peaks for interpolating the fractional timing offset is proposed. Numerical results show that even under low signal-to-noise ratio (SNR) and small rolloff factor conditions, the proposed estimator can approach the modified Cramer-Rao bound (MCRB) closely. Furthermore, this estimator only requires two samples per symbol and can be implemented with low complexity with respect to conventional data-aided estimators.

  • Bayesian Exponential Inverse Document Frequency and Region-of-Interest Effect for Enhancing Instance Search Accuracy

    Masaya MURATA  Hidehisa NAGANO  Kaoru HIRAMATSU  Kunio KASHINO  Shin'ichi SATOH  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/06/03
      Vol:
    E99-D No:9
      Page(s):
    2320-2331

    In this paper, we first analyze the discriminative power in the Best Match (BM) 25 formula and provide its calculation method from the Bayesian point of view. The resulting, derived discriminative power is quite similar to the exponential inverse document frequency (EIDF) that we have previously proposed [1] but retains more preferable theoretical advantages. In our previous paper [1], we proposed the EIDF in the framework of the probabilistic information retrieval (IR) method BM25 to address the instance search task, which is a specific object search for videos using an image query. Although the effectiveness of our EIDF was experimentally demonstrated, we did not consider its theoretical justification and interpretation. We also did not describe the use of region-of-interest (ROI) information, which is supposed to be input to the instance search system together with the original image query showing the instance. Therefore, here, we justify the EIDF by calculating the discriminative power in the BM25 from the Bayesian viewpoint. We also investigate the effect of the ROI information for improving the instance search accuracy and propose two search methods incorporating the ROI effect into the BM25 video ranking function. We validated the proposed methods through a series of experiments using the TREC Video Retrieval Evaluation instance search task dataset.

  • A 50-Gb/s Optical Transmitter Based on a 25-Gb/s-Class DFB-LD and a 0.18-µm SiGe BiCMOS LD Driver

    Takashi TAKEMOTO  Yasunobu MATSUOKA  Hiroki YAMASHITA  Takahiro NAKAMURA  Yong LEE  Hideo ARIMOTO  Tatemi IDO  

     
    PAPER-Optoelectronics

      Vol:
    E99-C No:9
      Page(s):
    1039-1047

    A 50-Gb/s optical transmitter, consisting of a 25-Gb/s-class lens-integrated DFB-LD (with -3-dB bandwidth of 20GHz) and a LD-driver chip based on 0.18-µm SiGe BiCMOS technology for inter and intra-rack transmissions, was developed and tested. The DFB-LD and LD driver chip are flip-chip mounted on an alumina ceramic package. To suppress inter-symbol interference due to a shortage of the DFB-LD bandwidth and signal reflection between the DFB-LD and the package, the LD driver includes a two-tap pre-emphasis circuit and a high-speed termination circuit. Operating at a data rate of 50Gb/s, the optical transmitter enhances LD bandwidth and demonstrated an eye opening with jitter margin of 0.23UI. Power efficiency of the optical transmitter at a data rate of 50Gb/s is 16.2mW/Gb/s.

  • 1-bit Feedforward Distortion Compensation Technology for Bandpass Delta-Sigma Modulation

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:5
      Page(s):
    1087-1092

    This paper proposes 1-bit feedforward distortion compensation for digital radio frequency conversion (DRFC) with 1-bit bandpass delta-sigma modulation (BP-DSM). The 1-bit BP-DSM allows direct RF signal transmission from a digitally modulated signal. However, it has been previously reported that 1-bit digital pulse trains with non-ideal rectangle waveform cause spectrum regrowth. The proposed architecture adds a feedforward path with another 1-bit BP-DSM and so can cancel out the distortion components at any target carrier frequency. Both the main signal and the distortion compensation signal are 1-bit digital pulse trains and so no additional analog RF circuit is required for distortion compensation. Simulation results show that the proposed method holds the adjacent channel leakage ratio to 60dB for LTE signal transmission. A prototype of the proposed 1-bit DRFC with an additional 1-bit BP-DSM in the feedforward path shows an ACLR of 50dB, 4dB higher than that of the conventional 1-bit DRFC.

  • Generalized Sliding Discrete Fourier Transform

    Takahiro MURAKAMI  Yoshihisa ISHIDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:1
      Page(s):
    338-345

    The sliding discrete Fourier transform (DFT) is a well-known algorithm for obtaining a few frequency components of the DFT spectrum with a low computational cost. However, the conventional sliding DFT cannot be applied to practical conditions, e.g., using the sine window and the zero-padding DFT, with preserving the computational efficiency. This paper discusses the extension of the sliding DFT to such cases. Expressing the window function by complex sinusoids, a recursive algorithm for computing a frequency component of the DFT spectrum using an arbitrary sinusoidal window function is derived. The algorithm can be easily extended to the zero-padding DFT. Computer simulations using very long signals show the validity of our algorithm.

  • High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence

    Yasuhide HIRAGA  Jun-ichi NISHIDE  Hajime NAKANOTANI  Masaki AONUMA  Chihaya ADACHI  

     
    PAPER-Electronic Materials

      Vol:
    E98-C No:10
      Page(s):
    971-976

    A highly efficient sky-blue organic light-emitting diode (OLED) based on a thermally-activated delayed fluorescence (TADF) molecule, 1,2-bis(carbazol-9-yl)-4,5-dicyanobenzene (2CzPN), was studied. The sky-blue OLED exhibited a maximum external electroluminescence quantum efficiency (ηEQE) of over 24.0%. In addition, a white OLED using 2CzPN combined with green and orange TADF emitters showed a high ηEQE of 17.3% with a maximum power efficiency of 52.3 lm/W and Commission Internationale de l'Eclairage coordinates of (0.32, 0.43).

  • Cooperative Communication Using the DF Protocol in the Hierarchical Modulation

    Sung-Bok CHOI  Eui-Hak LEE  Jung-In BAIK  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:9
      Page(s):
    1990-1994

    To improve the BER performance of the conventional cooperative communication, this letter proposes an efficient method for the reliability, and it uses hierarchical modulation that has both the high priority (HP) layer and the low priority (LP) layer. To compensate more reliable transmission, the proposed method uses the error correction capability of Reed-Solomon (RS) codes additionally. The simulation results show that the proposed method can transmit data more reliably than the basic RS coded decode-and-forward (DF) method.

  • New Burst-Mode Erbium-Doped Fiber Amplifier with Wide Linearity and High Output Power for Uplink Analog Radio-over-Fiber Signal Transmission

    Masaki SHIRAIWA  Yoshinari AWAJI  Naoya WADA  Atsushi KANNO  Toshiaki KURI  Pham TIEN DAT  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    832-839

    We report the adaptability of the burst-mode erbium-doped fiber amplifier (BM-EDFA) for uplink transmission of sharply rising analog radio-over-fiber (RoF) signals by using long-term evolution (LTE) -Advanced format on a mobile front-haul. Recent drastically increased mobile data traffic is boosting the demand for high-speed radio communication technologies for next-generation mobile services to enhance user experience. However, the latency become increasingly visible as serious issues. Analog RoF technology is a promising candidate for a next generation mobile front-haul to realize low latency. For the uplink, an RoF signal may rise sharply in response to a burst of in-coming radio signals. We propose that a newly developed BM-EDFA is applied for such a sharply rising RoF signal transmission. The BM-EDFA that we designed using enhanced intrinsic saturation power EDF to suppress the gain transient caused by received optical power fluctuations with optical feedback. The new BM-EDFA was designed for a wider linear output power range and lower NF than the previous BM-EDFA. The observed range of received optical power satisfying an error vector magnitude of less than 8%rms achieved over 16dB. We consider that our BM-EDFAs with wide linear ranges of output power will be a key device for the LTE-Advanced RoF uplink signal transmission via optical access networks for the next-generation mobile front-haul.

  • Burst-by-Burst Adaptive DF Relay Systems with PSA-CE Methods over Quasi-Static Rayleigh Fading Channels

    Kyunbyoung KO  Sungmook LIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1614-1621

    In this paper, we propose an analytical approach for adaptive decode-and-forward (ADF) relaying schemes consisting of burst data transmission based on pilot symbol assisted-channel estimation (PSA-CE) methods over quasi-static Rayleigh fading channels. At first, we focus on the error-event at relay nodes in which the transmission mode switching is carried out burst by burst, whereas previous studies assumed the transmission mode switching symbol-by-symbol, thus showing lower error rate bound. Under consideration of burst transmission for ADF relay systems, we derive exact error rate expressions which better estimate the performance of actual systems. Then, the average bit and burst error rates are derived in approximated expressions for an arbitrary link signal-to-noise ratio (SNR) related with channel estimation errors. Their accuracy is confirmed by comparison with simulation results. Furthermore, ADF relay systems with PSA-CE schemes are confirmed to select correctly decoded relay nodes without additional signaling between relay nodes and the destination node and it is verified to achieve the performance at a cost of negligible SNR loss.

  • Performance of Uplink Packetized LTE-A Signal Transmission on a Cascaded Radio-on-Radio and Radio-over-Fiber System

    Pham TIEN DAT  Atsushi KANNO  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    840-848

    In this paper, we propose a flexible and high-capacity front-haul link for the uplink transmission of high-speed mobile signals using a cascade of radio-on-radio (RoR) and radio-over-fiber (RoF) systems. To emulate the cases that may occur in the uplink direction, we experimentally investigate the performance of superposing an uplink bursty LTE-A signal on the cascaded system using optical packet signal transmission. The performance of systems using different types of erbium-doped fiber amplifiers (EDFAs), including a high-transient EDFA, an automatic-gain-control EDFA, and a burst-mode (BM) EDFA is evaluated and compared. We confirm that the dynamic transience of the EDFAs has a significant influence on the signal performance. By using a BM-EDFA, we confirm successful transmission of the uplink packetized LTE-A signal on the cascaded system. Both the measured error vector magnitude and the received optical power range metrics exceed the requirements. We also estimate the maximum transmission range of the RoR link, and it is confirmed that a sufficiently long range could be achieved for the applications in mobile front-haul networks.

  • Extended DFE Detection Scheme in MIMO-OFDM System

    Hwan-Jun CHOI  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:7
      Page(s):
    1549-1552

    Recently, among MIMO-OFDM detection schemes, a lot of V-BLAST schemes have been suggested in order to achieve high data rate. Therefore signal detection of MIMO-OFDM system is important issue. In this letter, extended DFE detection scheme is proposed. According to simulation result, the extended DFE detection has similar performance with QRD-M detection but the complexity is about 24.02% of QRD-M detection. Therefore the proposed E-DFE detection can be efficiently used in MIMO-OFDM system.

  • Accordion: An Efficient Gear-Shifting for a Power-Proportional Distributed Data-Placement Method

    Hieu Hanh LE  Satoshi HIKIDA  Haruo YOKOTA  

     
    PAPER

      Pubricized:
    2015/01/21
      Vol:
    E98-D No:5
      Page(s):
    1013-1026

    Power-aware distributed file systems for efficient Big Data processing are increasingly moving towards power-proportional designs. However, current data placement methods for such systems have not given careful consideration to the effect of gear-shifting during operations. If the system wants to shift to a higher gear, it must reallocate the updated datasets that were modified in a lower gear when a subset of the nodes was inactive, but without disrupting the servicing of requests from clients. Inefficient gear-shifting that requires a large amount of data reallocation greatly degrades the system performance. To address this challenge, this paper proposes a data placement method known as Accordion, which uses data replication to arrange the data layout comprehensively and provide efficient gear-shifting. Compared with current methods, Accordion reduces the amount of data transferred, which significantly shortens the period required to reallocate the updated data during gear-shifting then able to improve the performance of the systems. The effect of this reduction is larger with higher gears, so Accordion is suitable for smooth gear-shifting in multigear systems. Moreover, the times when the active nodes serve the requests are well distributed, so Accordion is capable of higher scalability than existing methods based on the I/O throughput performance. Accordion does not require any strict constraint on the number of nodes in the system therefore our proposed method is expected to work well in practical environments. Extensive empirical experiments using actual machines with an Accordion prototype based on the Hadoop Distributed File System demonstrated that our proposed method significantly reduced the period required to transfer updated data, i.e., by 66% compared with an existing method.

  • A Study of Effective Replica Reconstruction Schemes for the Hadoop Distributed File System

    Asami HIGAI  Atsuko TAKEFUSA  Hidemoto NAKADA  Masato OGUCHI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2015/01/13
      Vol:
    E98-D No:4
      Page(s):
    872-882

    Distributed file systems, which manage large amounts of data over multiple commercially available machines, have attracted attention as management and processing systems for Big Data applications. A distributed file system consists of multiple data nodes and provides reliability and availability by holding multiple replicas of data. Due to system failure or maintenance, a data node may be removed from the system, and the data blocks held by the removed data node are lost. If data blocks are missing, the access load of the other data nodes that hold the lost data blocks increases, and as a result, the performance of data processing over the distributed file system decreases. Therefore, replica reconstruction is an important issue to reallocate the missing data blocks to prevent such performance degradation. The Hadoop Distributed File System (HDFS) is a widely used distributed file system. In the HDFS replica reconstruction process, source and destination data nodes for replication are selected randomly. We find that this replica reconstruction scheme is inefficient because data transfer is biased. Therefore, we propose two more effective replica reconstruction schemes that aim to balance the workloads of replication processes. Our proposed replication scheduling strategy assumes that nodes are arranged in a ring, and data blocks are transferred based on this one-directional ring structure to minimize the difference in the amount of transfer data for each node. Based on this strategy, we propose two replica reconstruction schemes: an optimization scheme and a heuristic scheme. We have implemented the proposed schemes in HDFS and evaluate them on an actual HDFS cluster. We also conduct experiments on a large-scale environment by simulation. From the experiments in the actual environment, we confirm that the replica reconstruction throughputs of the proposed schemes show a 45% improvement compared to the HDFS default scheme. We also verify that the heuristic scheme is effective because it shows performance comparable to the optimization scheme. Furthermore, the experimental results on the large-scale simulation environment show that while the optimization scheme is unrealistic because a long time is required to find the optimal solution, the heuristic scheme is very efficient because it can be scalable, and that scheme improved replica reconstruction throughput by up to 25% compared to the default scheme.

  • Authorization Conflict Problems in Combining RIF Rules with RDF Data

    Jaehoon KIM  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2014/09/05
      Vol:
    E98-D No:4
      Page(s):
    863-871

    Resource Description Framework (RDF) access control suffers from an authorization conflict problem caused by RDF inference. When an access authorization is specified, it can lie in conflict with other access authorizations that have the opposite security sign as a result of RDF inference. In our former study, we analyzed the authorization conflict problem caused by subsumption inference, which is the key inference in RDF. The Rule Interchange Format (RIF) is a Web standard rule language recommended by W3C, and can be combined with RDF data. Therefore, as in RDF inference, an authorization conflict can be caused by RIF inference. In addition, this authorization conflict can arise as a result of the interaction of RIF inference and RDF inference rather than of RIF inference alone. In this paper, we analyze the authorization conflict problem caused by RIF inference and suggest an efficient authorization conflict detection algorithm. The algorithm exploits the graph labeling-based algorithm proposed in our earlier paper. Through experiments, we show that the performance of the graph labeling-based algorithm is outstanding for large RDF data.

  • A Distributed and Cooperative NameNode Cluster for a Highly-Available Hadoop Distributed File System

    Yonghwan KIM  Tadashi ARARAGI  Junya NAKAMURA  Toshimitsu MASUZAWA  

     
    PAPER-Computer System

      Pubricized:
    2014/12/26
      Vol:
    E98-D No:4
      Page(s):
    835-851

    Recently, Hadoop has attracted much attention from engineers and researchers as an emerging and effective framework for Big Data. HDFS (Hadoop Distributed File System) can manage a huge amount of data with high performance and reliability using only commodity hardware. However, HDFS requires a single master node, called a NameNode, to manage the entire namespace (or all the i-nodes) of a file system. This causes the SPOF (Single Point Of Failure) problem because the file system becomes inaccessible when the NameNode fails. This also causes a bottleneck of efficiency since all the access requests to the file system have to contact the NameNode. Hadoop 2.0 resolves the SPOF problem by introducing manual failover based on two NameNodes, Active and Standby. However, it still has the efficiency bottleneck problem since all the access requests have to contact the Active in ordinary executions. It may also lose the advantage of using commodity hardware since the two NameNodes have to share a highly reliable sophisticated storage. In this paper, we propose a new HDFS architecture to resolve all the problems mentioned above.

  • Adaptive Assignment of Deadline and Clock Frequency in Real-Time Embedded Control Systems

    Tatsuya YOSHIMOTO  Toshimitsu USHIO  Takuya AZUMI  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:1
      Page(s):
    323-330

    Computing and power resources are often limited in real-time embedded control systems. In this paper, we resolve the trade-off problem between control performance and power consumption in a real-time embedded control system with a dynamic voltage and frequency scaling (DVFS) uniprocessor implementing multiple control tasks. We formulate an optimization problem whose cost function depends on both the control performance and the power consumption. We introduce an adapter into the real-time embedded control system that adaptively assigns deadlines of jobs and clock frequencies according to the plant's stability and schedulability by solving the optimization problem. In numerical simulations, we show that the proposed adapter can reduce the power consumption while maintaining the control performance.

  • Round Addition DFA on SPN Block Ciphers

    Hideki YOSHIKAWA  Masahiro KAMINAGA  Arimitsu SHIKODA  Toshinori SUZUKI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:12
      Page(s):
    2671-2674

    A method of round addition attack on substitution-permutation network (SPN) block ciphers using differential fault analysis (DFA) is presented. For the 128-bit advanced encryption standard (AES), we show that secret keys can be extracted using one correct ciphertext and two faulty ciphertexts. Furthermore, we evaluate the success rate of a round addition DFA attack, experimentally. The proposed method can also be applied to lightweight SPN block cipher such as KLEIN and LED.

  • An Improved Cooperative Technique Sharing the Channel in OFDMA-Based System

    Junpyo JEON  Hyoung-Muk LIM  Hyuncheol PARK  Hyoung-Kyu SONG  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:12
      Page(s):
    3222-3225

    Cooperative communication has been proposed to improve the disadvantages of the multiple-input multiple-output (MIMO) technique without using extra multiple antennas. In an orthogonal frequency division multiple access (OFDMA) system, a cooperative communication that each user shares their allocated sub-channels instead of the MIMO system has been proposed to improve the throughput. But the cooperative communication has a problem as the decreased throughput because it is necessary that users send and receive the information to each other to improve reliability. In this letter, the modified cooperative transmission scheme is proposed to improve reliability in the fading channel, and it can solve the problem for BER performance that is dependent on the errors in the first phase that exchanges the information between both users during the first time.

  • Unitary Precoder Design for Multi-Stream MIMO Multicasting

    Baisheng DU  Xiaodong XU  Xuchu DAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2459-2468

    In this paper, we investigate unitary precoder design for multiple-input multiple-output (MIMO) multicasting, where multiple common data streams are sent to a group of users. Assuming that zero-forcing decision feedback equalizers (ZF-DFE) are adopted at the receiver side, we can convert the multicast channel into multiple parallel subchannels. To improve the receiving quality of all data streams, we focus on maximizing the minimal signal-to-noise ratio (SNR) of all data streams. To effectively handle this non-convex optimization problem, we first consider the special case of two data streams and derive the closed-form solution of the SNR vectors for both subchannels. Based on these results, a gradient-based iterative algorithm is developed for the proposed precoder design. For the general case, a Givens rotation-based iterative algorithm is proposed, where at each iteration the original problem of unitary precoder design is transformed into a dual-stream subproblem. Hence it can be solved efficiently by the gradient-based iterative algorithm. Finally, simulation results are presented to demonstrate the outstanding performance of the proposed design.

  • Roughness Classification with Aggregated Discrete Fourier Transform

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:10
      Page(s):
    2769-2779

    In this paper, we propose a texture descriptor based on amplitude distribution and phase distribution of the discrete Fourier transform (DFT) of an image. One dimensional DFT is applied to all the rows and columns of an image. Histograms of the amplitudes and gradients of the phases between adjacent rows/columns are computed as the feature descriptor, which is called aggregated DFT (ADFT). ADFT can be easily combined with completed local binary pattern (CLBP). The combined feature captures both global and local information of the texture. ADFT is designed for isotropic textures and demonstrated to be effective for roughness classification of castings. Experimental results show that the amplitude part of ADFT is also discriminative in describing anisotropic textures and it can be used as a complementary descriptor of local texture descriptors such as CLBP.

41-60hit(310hit)